论文标题
在岛屿上的半经典施瓦茨柴尔德黑洞对半经典的施法者的统一约束
Unitary Constraints on Semiclassical Schwarzschild Black Holes in the Presence of Island
论文作者
论文摘要
我们重新考虑$ d \ geq4 $渐近尺寸渐近的永恒的schwarzschild黑洞,并专注于选择辐射区域的内部边界接近地平线的情况(即$β\ ll1 $)。近距离条件与短距离近似之间的张力在$ [JHEP 06(2020)085] $中以较大的尺寸出现。我们通过引入更合适的地平线条件来消除这种张力,因此,在任何$ d \ geq4 $尺寸时空中,所得的岛屿解决方案均得到很好的态度。有趣的是,在这种情况下,岛解决方案的存在需要获得一个新颖的约束,这直接导致对Schwarzschild Black Hole的大小,辐射区域内部边界的位置或$ C \ cdot \ cdot \ tilde {g} {g} _ {n} $ in任何$ d $ d \ geq4 $ dimeslion的限制。考虑到大$ D $限制时,在这种情况下获得的Schwarzschild黑洞的尺寸的约束与$ [Phys.Rev.D.D.D.D 102(2020)2,026016] $的结果一致。我们将其解释为半经典重力中岛屿上存在所隐含的统一约束。
We reconsider $D\geq4$ dimensional asymptotically flat eternal Schwarzschild black hole, and focus on the situation where the inner boundary of the radiation region is chosen to be near the horizon (i.e. $β\ll1$). The tension between the near-horizon condition and the short-distance approximation emerges in large dimensions in $[JHEP 06 (2020) 085]$. We remove this tension by introducing a more proper near horizon condition, thus the resulting island solution is well-behaved in any $D\geq4$ dimensional spacetime. Interestingly, a novel constraint is obtained in this situation as required by the existence of the island solution, which directly leads to the constraints on the size of the Schwarzschild black hole, the position of the inner boundary for the radiation region, or the value of $c\cdot\tilde{G}_{N}$ in any $D\geq4$ dimension. When considering the large $D$ limit, the constraint on the size of the Schwarzschild black hole obtained in this situation is in agreement with the result given in $[Phys.Rev.D 102 (2020) 2, 026016]$. We interpret these as the unitary constraints implied by the presence of island in semiclassical gravity.