论文标题

使用EBGAN进行异常侵入检测

Using EBGAN for Anomaly Intrusion Detection

论文作者

Cui, Yi, Shen, Wenfeng, Zhang, Jian, Lu, Weijia, Liu, Chuang, Sun, Lin, Chen, Si

论文摘要

作为一种主动网络安全保护方案,入侵检测系统(IDS)承担以恶意网络流量形式检测网络攻击的重要责任。入侵检测技术是ID的重要组成部分。目前,许多学者已经对入侵检测技术进行了广泛的研究。但是,为大规模网络流量数据开发有效的入侵检测方法仍然很困难。由于生成的对抗网络(GAN)具有用于复杂高维数据的强大建模功能,因此它们为解决此问题提供了新的想法。在本文中,我们提出了一种基于Ebgan的入侵检测方法IDS-Ebgan,该方法将网络记录归类为正常流量或恶意流量。 IDS-Ebgan中的发电机负责将培训中原始的恶意网络流量转换为对抗性恶意示例。这是因为我们想使用对抗性学习来提高歧视者检测恶意流量的能力。同时,鉴别器采用自动编码器模型。在测试过程中,IDS-Ebgan使用歧视器的重建错误来对流量记录进行分类。

As an active network security protection scheme, intrusion detection system (IDS) undertakes the important responsibility of detecting network attacks in the form of malicious network traffic. Intrusion detection technology is an important part of IDS. At present, many scholars have carried out extensive research on intrusion detection technology. However, developing an efficient intrusion detection method for massive network traffic data is still difficult. Since Generative Adversarial Networks (GANs) have powerful modeling capabilities for complex high-dimensional data, they provide new ideas for addressing this problem. In this paper, we put forward an EBGAN-based intrusion detection method, IDS-EBGAN, that classifies network records as normal traffic or malicious traffic. The generator in IDS-EBGAN is responsible for converting the original malicious network traffic in the training set into adversarial malicious examples. This is because we want to use adversarial learning to improve the ability of discriminator to detect malicious traffic. At the same time, the discriminator adopts Autoencoder model. During testing, IDS-EBGAN uses reconstruction error of discriminator to classify traffic records.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源