论文标题

带有非平凡链接的随机张量网络

Random tensor networks with nontrivial links

论文作者

Cheng, Newton, Lancien, Cécilia, Penington, Geoff, Walter, Michael, Witteveen, Freek

论文摘要

随机张量网络是一种强大的玩具模型,用于了解全息量子重力的纠缠结构。但是,与全息量子重力不同,它们的纠缠光谱是平坦的。因此,人们认为,一个更好的模型由具有最大纠缠的链路状态的随机张量网络组成,即具有非平凡的光谱。在这项工作中,我们对这些网络的纠缠属性进行了系统的研究。我们采用自由概率,随机矩阵理论和一次性量子信息理论的工具来研究链接光谱中有界限和无界变化的随机张量网络,并且在子系统具有一个或多个最小值的情况下。如果链路状态具有有界的频谱变化,则可以将两个最小切割的子系统的限制纠缠光谱和Marchenko-Pastur分布表示为每个切割的纠缠光谱的免费产物。对于一类具有光谱变化的状态,类似于量子重力中的半经典状态,我们将子系统的极限纠缠光谱与两个最小切割的限制性纠缠光谱与在两个切口之间的最小纠缠的分布联系起来。在此过程中,我们与先前有关拆分传输方案,随机张量网络中的纠缠负态和欧几里得路径积分的连接。

Random tensor networks are a powerful toy model for understanding the entanglement structure of holographic quantum gravity. However, unlike holographic quantum gravity, their entanglement spectra are flat. It has therefore been argued that a better model consists of random tensor networks with link states that are not maximally entangled, i.e., have nontrivial spectra. In this work, we initiate a systematic study of the entanglement properties of these networks. We employ tools from free probability, random matrix theory, and one-shot quantum information theory to study random tensor networks with bounded and unbounded variation in link spectra, and in cases where a subsystem has one or multiple minimal cuts. If the link states have bounded spectral variation, the limiting entanglement spectrum of a subsystem with two minimal cuts can be expressed as a free product of the entanglement spectra of each cut, along with a Marchenko-Pastur distribution. For a class of states with unbounded spectral variation, analogous to semiclassical states in quantum gravity, we relate the limiting entanglement spectrum of a subsystem with two minimal cuts to the distribution of the minimal entanglement across the two cuts. In doing so, we draw connections to previous work on split transfer protocols, entanglement negativity in random tensor networks, and Euclidean path integrals in quantum gravity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源