论文标题

SpinsPotter:一种用于通过自相关分析识别恒星旋转周期的自动化算法

SpinSpotter: An Automated Algorithm for Identifying Stellar Rotation Periods With Autocorrelation Analysis

论文作者

Holcomb, Rae J., Robertson, Paul, Hartigan, Patrick, Oelkers, Ryan J., Robinson, Caleb

论文摘要

SpinsPotter是一种健壮且自动化的算法,旨在从最小的监督下从大型光度数据集中提取出色的旋转周期。我们的方法使用自相关函数(ACF)来确定恒星旋转周期最多是数据的观察基线。我们的算法还提供了一套诊断套件,以描述ACF中的功能,从而使用户可以微调接受周期检测的公差。我们将其应用于大约130,000个主要序列恒星,该恒星在行业1-26期间以2分钟的节奏在2分钟的节奏下观察到,并确定旋转周期为13,504颗恒星,范围为0.4至14天。我们证明了我们的样本与文献中的已知值之间的良好一致性,并注意我们的旋转器人群与以前在开普勒场中鉴定的人之间的关键差异,最著名的是大量的快速旋转M矮人。我们的旋转恒星样品提供了一个数据集,几乎可以用作整个天空的覆盖范围,该数据可以用作将来的陀螺仪研究的基础,并且在与盖亚(Gaia)的适当运动和距离结合使用时,可以搜索具有较高年轻恒星的较高密度的区域,从而识别近期恒星形成的区域,并确定了近期的恒星形成和未发现的移动小组成员。我们的算法可在Github上公开下载和使用。

Spinspotter is a robust and automated algorithm designed to extract stellar rotation periods from large photometric datasets with minimal supervision. Our approach uses the autocorrelation function (ACF) to identify stellar rotation periods up to one-third the observational baseline of the data. Our algorithm also provides a suite of diagnostics that describe the features in the ACF, which allows the user to fine-tune the tolerance with which to accept a period detection. We apply it to approximately 130,000 main-sequence stars observed by the Transiting Exoplanet Survey Satellite (TESS) at 2-minute cadence during Sectors 1-26, and identify rotation periods for 13,504 stars ranging from 0.4 to 14 days. We demonstrate good agreement between our sample and known values from the literature and note key differences between our population of rotators and those previously identified in the Kepler field, most notably a large population of fast-rotating M dwarfs. Our sample of rotating stars provides a data set with coverage of nearly the entire sky that can be used as a basis for future gyrochronological studies, and, when combined with proper motions and distances from Gaia, to search for regions with high densities of young stars, thus identifying areas of recent star formation and undiscovered moving group members. Our algorithm is publicly available for download and use on GitHub.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源