论文标题

陈述了3个manifolds和TQFT的绞线模块

Stated skein modules of 3-manifolds and TQFT

论文作者

Costantino, Francesco, Le, Thang T. Q.

论文摘要

我们研究了沿着表面胶合的3个manifolds的Kauffman支架绞线模块的行为。为此,我们将Kauffman Bracket Skein模块的概念扩展到$ 3 $ -Manifolds,标记由边界中的开放间隔和圆圈组成。新模块称为已陈述的绞线模块。 第一个主要结果涉及某些自然图的非注射率,当沿球体或沿封闭磁盘形成连接的总和时,定义的某些自然图。这些地图是对表面或通用量子参数的注入性的,但是我们表明,当量子参数为1的根时,它们通常不是侮辱性的。结果也适用于经典的Skein模块。一个特定有趣的结果是,当量子参数是1的根时,空键在连接的总和中为零,每个组成歧管都具有非空标记。 我们还证明了Chebyshev-Frobenius地图以及由标记球删除引起的自然图的各种非注射率结果。 然后,我们考虑沿表面胶合的一般情况,表明所述的绞线模块可以解释为从一类“装饰的恢复主义”到代数及其双模型的莫里塔类别的单体对称函数。我们将此结果应用于将所述的绞线模块的几种属性推断为像定理这样的范坎佩,以及通过Heegaard分解的计算,以及与hochshild同源物的关系,以在表面上进行琐碎的圆圈捆绑包。

We study the behaviour of the Kauffman bracket skein modules of 3-manifolds under gluing along surfaces. For this purpose we extend the notion of Kauffman bracket skein modules to $3$-manifolds with marking consisting of open intervals and circles in the boundary. The new module is called the stated skein module. The first main results concern non-injectivity of certain natural maps defined when forming connected sums along a sphere or along a closed disk. These maps are injective for surfaces, or for generic quantum parameter, but we show that in general they are not injective when the quantum parameter is a root of 1. The result applies to the classical skein modules as well. A particular interesting result is that when the quantum parameter is a root of 1, the empty skein is zero in a connected sum where each constituent manifold has non-empty marking. We also prove various non injectivity results for the Chebyshev-Frobenius map and the natural map induced by the deletion of marked balls. We then consider the general case of gluing along a surface, showing that the stated skein module can be interpreted as a monoidal symmetric functor from a category of "decorated cobordisms" to a Morita category of algebras and their bimodules. We apply this result to deduce several properties of stated skein modules as a Van-Kampen like theorem as well as a computation through Heegaard decompositions and a relation to Hochshild homology for trivial circle bundles over surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源