论文标题
反射循环的过滤性多态性
Surjective polymorphisms of reflexive cycles
论文作者
论文摘要
反身循环是任何反射挖掘图,其基本的无向图是一个循环。如果其溢流性多态性本质上都是一致的,则称其为slupecki。我们证明,腰围的所有反身循环至少有4个属性。
A reflexive cycle is any reflexive digraph whose underlying undirected graph is a cycle. Call a relational structure Slupecki if its surjective polymorphisms are all essentially unary. We prove that all reflexive cycles of girth at least 4 have this property.