论文标题
观察由相对同喻确定的节点线转换
Observing the nodal-line conversion determined by the relative homotopy
论文作者
论文摘要
直接识别非亚伯节点线半学(NASM)非常具有挑战性,因为节点线半学通常不具有拓扑保护的边界模式。在这里,提出了通过尺度尺度电位重建冬宫系统的宽敞状态与电路电压模式之间的对应关系,提出了颞上托电路(TTC),以证明nasm。在发现NASM的逻辑进展之后,我们首先使用TTC来证明两种频段模型的相对同拷贝组,该组可以忠实地确定节点输入和非非局部对称性不变的子空间之间的转换规则。接下来,我们表明,随着其他乐队的考虑,这些规则发生了巨大的变化,从历史上看,这些规则导致了NASM的出现。另外,我们演示了独特的非亚伯构成的淋巴结构型 - 耳环淋巴结线。我们的结果建立了用于进一步研究拓扑线变性的NASM,并提出的TTC将是探索淋巴结半法的多功能平台。
Directly identifying the non-Abelian nodal-line semimetals (NASM) is quite challenging because nodal-line semimetals typically do not possess topologically protected boundary modes. Here, by reconstructing the correspondence between the bulk states of Hermitian systems and circuit voltage modes through gauge scale potential, the temporal topolectrical circuits (TTC) for evidencing NASM are proposed. Following the logical progress of discovering NASM, we start by demonstrating the relative homotopy group of two-band models using TTC, which can faithfully determine the conversion rules between the nodes in and out of the non-local-symmetry invariant subspace. Next, we show that those rules dramatically change with the consideration of the additional band, historically leading to the arising of the NASM. Also, we demonstrate the unique non-Abelian constrained nodal configuration -- earring nodal lines. Our results established NASM for further investigating topological line degeneracies, and proposed TTC will be a versatile platform for exploring nodal-line semimetals.