论文标题

Novelcraft:开放世界中新颖发现和发现的数据集

NovelCraft: A Dataset for Novelty Detection and Discovery in Open Worlds

论文作者

Feeney, Patrick, Schneider, Sarah, Lymperopoulos, Panagiotis, Liu, Li-Ping, Scheutz, Matthias, Hughes, Michael C.

论文摘要

为了使人工代理在不断变化的环境中成功执行任务,它们必须能够检测并适应新颖性。但是,视觉新颖性检测研究通常仅在重新利用的数据集(例如CIFAR-10)上评估最初用于对象分类的CIFAR-10,其中图像集中在一个不同的,以良好的为中心的对象上。需要新的基准来代表开放世界复杂场景的挑战。我们的新型NovelCraft数据集包含图像和符号世界的多模式情节数据,该数据由代理在修改的Minecraft环境中完成POGO Stick组装任务。在某些情节中,我们插入了可能影响游戏玩法的复杂3D场景中的不同大小的新颖对象。我们的视觉新颖性检测基准发现,在控制假阳性最重要时,更简单的替代方案在流行区域中排名最高的方法可能胜过更简单的方法。进一步的多模式新颖性检测实验表明,融合视觉和符号信息的方法可以改善时间,直到检测以及总体歧视。最后,我们对最近的广义类别发现方法的评估表明,在复杂场景中适应新的不平衡类别仍然是一个令人兴奋的开放问题。

In order for artificial agents to successfully perform tasks in changing environments, they must be able to both detect and adapt to novelty. However, visual novelty detection research often only evaluates on repurposed datasets such as CIFAR-10 originally intended for object classification, where images focus on one distinct, well-centered object. New benchmarks are needed to represent the challenges of navigating the complex scenes of an open world. Our new NovelCraft dataset contains multimodal episodic data of the images and symbolic world-states seen by an agent completing a pogo stick assembly task within a modified Minecraft environment. In some episodes, we insert novel objects of varying size within the complex 3D scene that may impact gameplay. Our visual novelty detection benchmark finds that methods that rank best on popular area-under-the-curve metrics may be outperformed by simpler alternatives when controlling false positives matters most. Further multimodal novelty detection experiments suggest that methods that fuse both visual and symbolic information can improve time until detection as well as overall discrimination. Finally, our evaluation of recent generalized category discovery methods suggests that adapting to new imbalanced categories in complex scenes remains an exciting open problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源