论文标题
等级的模量空间的渐近几何形状两个不规则的希格斯捆绑在投影线上
Asymptotic Geometry of the Moduli Space of Rank Two Irregular Higgs Bundles over the Projective Line
论文作者
论文摘要
我们研究Hitchin的Hyperkähler指标的渐近行为在等级两个不规则的希格斯捆绑$ \ mathbb {c} p^1 $上。沿着通用曲线,我们证明Hitchin度量是按任意多项式秩序渐近渐近度度量的。如果没有弱抛物线奇异性,则速率为指数。在四维模量空间的情况下,我们证明半平原度量是渐近的,对ALG/ALG $^\ ast $模型公制是渐近的。
We study the asymptotic behavior of Hitchin's hyperkähler metric on the moduli space of rank two irregular Higgs bundles over $\mathbb{C}P^1$. Along a generic curve, we prove that the Hitchin metric is asymptotic to the semiflat metric at an arbitrary polynomial order. When there are no weakly parabolic singularities, the rate is exponential. In the case of four-dimensional moduli spaces, we prove that the semiflat metric is asymptotic to an ALG/ALG$^\ast$ model metric.