论文标题

具有未建模动力学系统的物理学引导的数据驱动的馈电跟踪控制器 - 应用于3D打印

A physics-guided data-driven feedforward tracking controller for systems with unmodeled dynamics -- applied to 3D printing

论文作者

Chou, Cheng-Hao, Duan, Molong, Okwudire, Chinedum E.

论文摘要

为具有未模拟的线性或非线性动力学的系统提出了混合动力(即物理学引导的数据驱动)馈电跟踪控制器。控制器基于过滤基函数(FBF)方法,因此称为混合FBF控制器。它将输入控制输入输入到系统中,作为一组基础函数的线性组合,其系数被选择以最大程度地减少跟踪误差。使用两个线性模型的组合对基本函数进行过滤,以预测和最小化跟踪误差。第一个模型是基于物理的,在执行控制器的执行过程中保持不变,而第二个是数据驱动的,并且在执行控制器的执行过程中会不断更新。为了确保其实用性和安全学习,提议的混合FBF控制器具有处理数据获取延迟的能力,并且由于其固有的数据驱动反馈循环而检测到即将到来的不稳定。通过应用无线性和非线性动力学的3D打印机的振动补偿来证明其有效性。由于提出的混合FBF控制器,与不包含数据驱动模型的标准FBF控制器相比,涉及高速打印的实验中,3D打印机的跟踪精度得到了显着提高。此外,使用从实验中在线收集的数据证明了混合FBF控制器检测并有可能避免即将出现的不稳定的能力。

A hybrid (i.e., physics-guided data-driven) feedforward tracking controller is proposed for systems with unmodeled linear or nonlinear dynamics. The controller is based on the filtered basis function (FBF) approach, hence it is called a hybrid FBF controller. It formulates the feedforward control input to a system as a linear combination of a set of basis functions whose coefficients are selected to minimize tracking errors. The basis functions are filtered using a combination of two linear models to predict and minimize the tracking errors. The first model is physics-based and remains unaltered during the execution of the controller, while the second is data-driven and is continuously updated during the execution of the controller. To ensure its practicality and safe learning, the proposed hybrid FBF controller is equipped with the ability to handle delays in data acquisition and to detect impending instability due to its inherent data-driven feedback loop. Its effectiveness is demonstrated via application to vibration compensation of a 3D printer with unmodeled linear and nonlinear dynamics. Thanks to the proposed hybrid FBF controller, the tracking accuracy of the 3D printer is significantly improved in experiments involving high-speed printing, compared to a standard FBF controller that does not incorporate a data-driven model. Furthermore, the ability of the hybrid FBF controller to detect and, hence, potentially avoid impending instability is demonstrated offline using data collected online from experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源