论文标题
使用太空传播引力检测器网络解决银河系二进制
Resolving Galactic binaries using a network of space-borne gravitational wave detectors
论文作者
论文摘要
从单个银河二进制文件(GB)中提取引力波(GW)信号针对其自我生成的混乱噪声是对在$ \ $ \ $ \ 0.1 $ MHz中运行的太空传播探测器的关键数据分析挑战。鉴于可能有多个此类检测器的前景,即Lisa,Taiji和Tianqin,并且在未来十年内有重叠的操作周期,因此必须检查其数据的联合分析可以使GB分析和参数估计受益的程度很重要。为了进行调查,我们使用了现实的模拟Lisa和Taiji数据,其中包含第一个Lisa数据挑战(Radler)中使用的$ 30 \ times 10^6 $ GBS,以及一种迭代源提取方法,称为GBSIEVER,该方法在早期工作中引入。我们发现,Lisa-Taiji数据的连贯网络分析将确认来源的数量增加了$ \ \%\%$,而不是单个检测器的数量。从任何一个检测器的数据中减去报告的源后的残留物更接近从理想但不可行的多源分辨率方法中预期的混淆噪声,该方法完美地删除了高于给定的信噪比阈值以上的所有源。尽管单个检测器和网络共有的源的参数估计与后者中GW源的增强信号与噪声比的相一致,但观察到Fisher信息分析预测的误差方差的偏差是参数的子集的偏差。
Extracting gravitational wave (GW) signals from individual Galactic binaries (GBs) against their self-generated confusion noise is a key data analysis challenge for space-borne detectors operating in the $\approx 0.1$ mHz to $\approx 10$ mHz range. Given the likely prospect that there will be multiple such detectors, namely LISA, Taiji, and Tianqin, with overlapping operational periods in the next decade, it is important to examine the extent to which the joint analysis of their data can benefit GB resolution and parameter estimation. To investigate this, we use realistic simulated LISA and Taiji data containing the set of $30\times 10^6$ GBs used in the first LISA data challenge (Radler), and an iterative source extraction method called GBSIEVER introduced in an earlier work. We find that a coherent network analysis of LISA-Taiji data boosts the number of confirmed sources by $\approx 75\%$ over that from a single detector. The residual after subtracting out the reported sources from the data of any one of the detectors is much closer to the confusion noise expected from an ideal, but infeasible, multisource resolution method that perfectly removes all sources above a given signal-to-noise ratio threshold. While parameter estimation for sources common to both the single detector and network improves broadly in line with the enhanced signal to noise ratio of GW sources in the latter, deviation from the scaling of error variance predicted by Fisher information analysis is observed for a subset of the parameters.