论文标题
Zprobe:零窥视鲁棒性检查联合学习
zPROBE: Zero Peek Robustness Checks for Federated Learning
论文作者
论文摘要
隐私的联合学习允许多个用户与中央服务器协调共同培训模型。服务器仅了解最终聚合结果,因此用户(私有)培训数据不会从单个模型更新中泄漏。但是,保持各个更新私有,使恶意用户可以执行拜占庭式攻击并降低准确性而无需检测到。针对拜占庭工人的最佳防御能力依赖于基于排名的统计数据,例如中位数,以查找恶意更新。但是,实施基于隐私的排名统计信息在安全域中是非平地的,并且不可扩展,因为它需要对所有单个更新进行排序。我们建立了第一个私人鲁棒性检查,该检查在汇总模型更新上使用了基于高断点等级的统计信息。通过利用随机聚类,我们在不损害隐私的情况下显着提高了防御的可扩展性。我们利用零知识证明的统计界限来检测和删除恶意更新,而无需透露私人用户更新。我们的新颖框架Zprobe可以使拜占庭式的弹性和安全的联合学习。经验评估表明,Zprobe提供了低架空解决方案,以防御最新的拜占庭攻击,同时保留隐私。
Privacy-preserving federated learning allows multiple users to jointly train a model with coordination of a central server. The server only learns the final aggregation result, thus the users' (private) training data is not leaked from the individual model updates. However, keeping the individual updates private allows malicious users to perform Byzantine attacks and degrade the accuracy without being detected. Best existing defenses against Byzantine workers rely on robust rank-based statistics, e.g., median, to find malicious updates. However, implementing privacy-preserving rank-based statistics is nontrivial and not scalable in the secure domain, as it requires sorting all individual updates. We establish the first private robustness check that uses high break point rank-based statistics on aggregated model updates. By exploiting randomized clustering, we significantly improve the scalability of our defense without compromising privacy. We leverage our statistical bounds in zero-knowledge proofs to detect and remove malicious updates without revealing the private user updates. Our novel framework, zPROBE, enables Byzantine resilient and secure federated learning. Empirical evaluations demonstrate that zPROBE provides a low overhead solution to defend against state-of-the-art Byzantine attacks while preserving privacy.