论文标题
在$ l^{2} _ {\ rm loc}(\ Mathbb {r}^3)$中存在针对Navier-Stokes方程的本地弱解决方案的本地弱解决方案。
Existence of local suitable weak solutions to the Navier-Stokes equations for initial data in $L^{2}_{\rm loc} (\mathbb{R}^3)$
论文作者
论文摘要
我们考虑$ \ mathbb {r}^3 $中的navier-stokes方程,约为初始条件的初始条件,并在$ l^{2} _ {\ rm loc}(\ mathbb {rm}^3)$中,以下\ | _ {l^{2}(b(r))} < +\ infty $。我们的目的是显示局部存在薄弱的解决方案,如果$ C = 0 $以及Caffarelli-Kohn-Nirenberg意义上的部分规律性,则全球存在解决方案的存在。
We consider the Navier-Stokes equations in $\mathbb{R}^3$ subject to the initial condition with initial velocity field in $L^{2}_{\rm loc} (\mathbb{R}^3)$ such that $\limsup_{R \to +\infty } R^{-1} \|u_{0} \|_{ L^{2}(B(R))} < +\infty$. Our aim is to show the local existence of a weak solution, global existence of weak solution if $C=0$ and the partial regularity in the sense of Caffarelli-Kohn-Nirenberg.