论文标题
强烈的同构符号扩展,用于扩张拓扑流
Strongly isomorphic symbolic extensions for expansive topological flows
论文作者
论文摘要
在本文中,我们证明没有固定点的有限维拓扑流并且具有可数量的周期性轨道,具有较小的流量边界特性。这使我们能够从1972年起积极回答Bowen和Walters的问题:任何膨胀的拓扑流都具有强烈的同构符号流延伸,即通过悬架流在子移位上的悬架流量扩展。以前,如果假定该流量为$ c^2 $ -Smooth,则Burguet表明这是正确的。
In this paper, we prove that finite-dimensional topological flows without fixed points and having a countable number of periodic orbits, have the small flow boundary property. This enables us to answer positively a question of Bowen and Walters from 1972: Any expansive topological flow has a strongly isomorphic symbolic flow extension, i.e. an extension by a suspension flow over a subshift. Previously Burguet had shown this is true if the flow is assumed to be $C^2$-smooth.