论文标题
在存在$ k $ - essence场与相对论流体的非最小导数依赖性耦合的情况下,动力稳定性
Dynamical Stability in presence of non-minimal derivative dependent coupling of $k$-essence field with a relativistic fluid
论文作者
论文摘要
在本文中,我们研究了一种非最小时空衍生品依赖性,使用变异方法之间的$ k $ - 词段和相对论流体之间的耦合。派生耦合项将$ k $ - essence字段的时空导数与流体4速度通过内部产品耦合。内部产品具有系数,其形式指定各种相互作用模型。通过在拉格朗日级别引入一个耦合术语并使用变分技术,我们在空间平坦的Friedmann-Lemaitre-Robertson-Walker(FLRRW)Metric的背景下获得了$ k $ - Essence Field方程和Friedmann方程。在两种相互作用模型的背景下,我们使用动力学分析方法明确地分析了该耦合方案的动力学。模型的区别是系数乘以衍生耦合项的形式。在最简单的方法中,我们与$ k $ - essence Field的逆平方法潜力合作。这两个模型不仅能够产生稳定的加速解决方案,而且还可以解释进化宇宙的不同阶段。
In this paper we investigate a non-minimal, space-time derivative dependent, coupling between the $k$-essence field and a relativistic fluid using a variational approach. The derivative coupling term couples the space-time derivative of the $k$-essence field with the fluid 4-velocity via an inner product. The inner product has a coefficient whose form specifies the various models of interaction. By introducing a coupling term at the Lagrangian level and using the variational technique we obtain the $k$-essence field equation and the Friedmann equations in the background of a spatially flat Friedmann-Lemaitre-Robertson-Walker (FLRW) metric. Explicitly using the dynamical analysis approach we analyze the dynamics of this coupled scenario in the context of two kinds of interaction models. The models are distinguished by the form of the coefficient multiplying the derivative coupling term. In the simplest approach we work with an inverse square law potential of the $k$-essence field. Both of the models are not only capable of producing a stable accelerating solution, they can also explain different phases of the evolutionary universe.