论文标题

多源域概括的封闭域单元

Gated Domain Units for Multi-source Domain Generalization

论文作者

Föll, Simon, Dubatovka, Alina, Ernst, Eugen, Chau, Siu Lun, Maritsch, Martin, Okanovic, Patrik, Thäter, Gudrun, Buhmann, Joachim M., Wortmann, Felix, Muandet, Krikamol

论文摘要

当测试时间的数据集与训练时间的数据集不同时,分布偏移(DS)的现象会发生,这可能会严重损害机器学习模型在实际设置中的性能,因为缺乏有关测试时数据分布的知识。为了解决这个问题,我们假设现实世界的分布由不同域的潜在不变基本分布(即)组成。该假设意味着解决方案空间中的一个不变结构,可以使知识转移到看不见的域。为了利用此属性进行域的概括,我们引入了一个模块化神经网络层,该模块化神经网络层由门控域单元(GDU)组成,该单元(GDU)学习每个潜在基本分布的表示形式。在推断期间,可以通过将新观察结果与每个基本分布的表示形式进行比较,可以创建一个学习机的加权集合。我们的灵活框架还可以容纳不存在明确域信息的场景。关于图像,文本和图形数据的广泛实验表明,对训练目标域的性能一致。这些发现支持了即d假设的实用性以及GDU对域泛化的有效性。

The phenomenon of distribution shift (DS) occurs when a dataset at test time differs from the dataset at training time, which can significantly impair the performance of a machine learning model in practical settings due to a lack of knowledge about the data's distribution at test time. To address this problem, we postulate that real-world distributions are composed of latent Invariant Elementary Distributions (I.E.D) across different domains. This assumption implies an invariant structure in the solution space that enables knowledge transfer to unseen domains. To exploit this property for domain generalization, we introduce a modular neural network layer consisting of Gated Domain Units (GDUs) that learn a representation for each latent elementary distribution. During inference, a weighted ensemble of learning machines can be created by comparing new observations with the representations of each elementary distribution. Our flexible framework also accommodates scenarios where explicit domain information is not present. Extensive experiments on image, text, and graph data show consistent performance improvement on out-of-training target domains. These findings support the practicality of the I.E.D assumption and the effectiveness of GDUs for domain generalisation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源