论文标题
确定$(2+1)$ - 用量子计算的QED的运行耦合的策略
Strategies for the Determination of the Running Coupling of $(2+1)$-dimensional QED with Quantum Computing
论文作者
论文摘要
我们建议利用NISQ时代的量子设备来计算$(2+1)$ - 尺寸QED的短距离数量,并将它们与大容量的蒙特卡洛模拟和扰动理论相结合。在量子计算方面,我们在小型和中间方面对质量差距进行计算,在后一种情况下,可以可靠地解析它。 SO获得的质量差距可用于匹配蒙特卡洛模拟的相应结果,蒙特卡洛模拟最终可用于设置物理尺度。在本文中,我们为量子计算提供了设置,并显示了质量差距和plaquette期望值的结果。此外,我们讨论了一些可以应用于运行耦合的计算的想法。由于该理论是渐进的,因此它将作为$(3+1)$ - 量子计算机上的QCD研究的训练场。
We propose to utilize NISQ-era quantum devices to compute short distance quantities in $(2+1)$-dimensional QED and to combine them with large volume Monte Carlo simulations and perturbation theory. On the quantum computing side, we perform a calculation of the mass gap in the small and intermediate regime, demonstrating, in the latter case, that it can be resolved reliably. The so obtained mass gap can be used to match corresponding results from Monte Carlo simulations, which can be used eventually to set the physical scale. In this paper we provide the setup for the quantum computation and show results for the mass gap and the plaquette expectation value. In addition, we discuss some ideas that can be applied to the computation of the running coupling. Since the theory is asymptotically free, it would serve as a training ground for future studies of QCD in $(3+1)$-dimensions on quantum computers.