论文标题

BIMS-PU:双向和多尺度点云上采样

BIMS-PU: Bi-Directional and Multi-Scale Point Cloud Upsampling

论文作者

Bai, Yechao, Wang, Xiaogang, Ang Jr, Marcelo H., Rus, Daniela

论文摘要

多尺度特征的学习和聚集对于授权神经网络以捕获点云上采样任务中的细颗粒几何细节至关重要。大多数现有方法从固定分辨率的点云中提取多尺度功能,因此仅获得有限的细节。尽管现有的方法汇总了一系列Upplamping子网络的不同分辨率的特征层次结构,但培训却很复杂,计算昂贵。为了解决这些问题,我们构建了一个名为BIMS-PU的新点云上采样管道,该管道将特征金字塔体系结构与双向上下采样路径集成在一起。具体而言,我们通过将目标采样因子分解为较小的因素,将上/下采样过程分解为几个抬高/下采样子位。多尺度特征是自然而然地以平行方式生产的,并使用快速特征融合方法汇总。监督信号同时应用于不同尺度的所有上采样点云。此外,我们制定一个残留块,以减轻模型的训练。在不同数据集上进行的广泛定量和定性实验表明,我们的方法取得了优于最新方法的结果。最后但并非最不重要的一点是,我们证明了点云上采样可以通过改善3D数据质量来改善机器人感知。

The learning and aggregation of multi-scale features are essential in empowering neural networks to capture the fine-grained geometric details in the point cloud upsampling task. Most existing approaches extract multi-scale features from a point cloud of a fixed resolution, hence obtain only a limited level of details. Though an existing approach aggregates a feature hierarchy of different resolutions from a cascade of upsampling sub-network, the training is complex with expensive computation. To address these issues, we construct a new point cloud upsampling pipeline called BIMS-PU that integrates the feature pyramid architecture with a bi-directional up and downsampling path. Specifically, we decompose the up/downsampling procedure into several up/downsampling sub-steps by breaking the target sampling factor into smaller factors. The multi-scale features are naturally produced in a parallel manner and aggregated using a fast feature fusion method. Supervision signal is simultaneously applied to all upsampled point clouds of different scales. Moreover, we formulate a residual block to ease the training of our model. Extensive quantitative and qualitative experiments on different datasets show that our method achieves superior results to state-of-the-art approaches. Last but not least, we demonstrate that point cloud upsampling can improve robot perception by ameliorating the 3D data quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源