论文标题
增强的深层动画视频插值
Enhanced Deep Animation Video Interpolation
论文作者
论文摘要
现有的基于学习的框架插值算法从高速自然视频中提取连续帧以训练模型。与自然视频相比,卡通视频通常以较低的框架速率。此外,连续卡通框架之间的运动通常是非线性,它破坏了插值算法的线性运动假设。因此,它不适合直接从卡通视频中生成训练集。为了更好地适应从自然视频到动画视频的框架插值算法,我们提出了Autofi,这是一种简单有效的方法,可以自动渲染培训数据,以进行深层动画视频插值。 Autofi采用分层体系结构来渲染合成数据,从而确保线性运动的假设。实验结果表明,Autofi在训练Dain和Anin方面表现出色。但是,大多数框架插值算法仍将在容易出错的区域(例如快速运动或大闭塞)中失败。除了Autofi外,我们还提出了一个基于插件的素描后处理模块,名为SKTFI,以手动使用用户提供的草图来完善最终结果。借助Autofi和SKTFI,插值动画框架显示出高感知质量。
Existing learning-based frame interpolation algorithms extract consecutive frames from high-speed natural videos to train the model. Compared to natural videos, cartoon videos are usually in a low frame rate. Besides, the motion between consecutive cartoon frames is typically nonlinear, which breaks the linear motion assumption of interpolation algorithms. Thus, it is unsuitable for generating a training set directly from cartoon videos. For better adapting frame interpolation algorithms from nature video to animation video, we present AutoFI, a simple and effective method to automatically render training data for deep animation video interpolation. AutoFI takes a layered architecture to render synthetic data, which ensures the assumption of linear motion. Experimental results show that AutoFI performs favorably in training both DAIN and ANIN. However, most frame interpolation algorithms will still fail in error-prone areas, such as fast motion or large occlusion. Besides AutoFI, we also propose a plug-and-play sketch-based post-processing module, named SktFI, to refine the final results using user-provided sketches manually. With AutoFI and SktFI, the interpolated animation frames show high perceptual quality.