论文标题

部分可观测时空混沌系统的无模型预测

Multiple Instance Learning with Mixed Supervision in Gleason Grading

论文作者

Bian, Hao, Shao, Zhuchen, Chen, Yang, Wang, Yifeng, Wang, Haoqian, Zhang, Jian, Zhang, Yongbing

论文摘要

随着计算病理学的发展,通过整个幻灯片图像(WSIS)的Gleason评分的深度学习方法具有良好的前景。由于WSIS的大小非常大,因此图像标签通常仅包含幻灯片级标签或有限的像素级标签。当前的主流方法采用了多个实体学习来预测格里森等级。但是,某些方法仅考虑幻灯片级标签,忽略了包含丰富本地信息的有限像素级标签。此外,另外考虑像素级标签的方法忽略了像素级标签的不准确性。为了解决这些问题,我们根据多个实例学习框架提出了混合监督变压器。该模型同时使用幻灯片级标签和实例级别标签,以在幻灯片级别实现更准确的Gleason分级。通过在混合监督培训过程中引入有效的随机掩盖策略,进一步降低了实例级标签的影响。我们在SICAPV2数据集上实现了最新性能,并且视觉分析显示了实例级别的准确预测结果。源代码可从https://github.com/bianhao123/mixed_supervision获得。

With the development of computational pathology, deep learning methods for Gleason grading through whole slide images (WSIs) have excellent prospects. Since the size of WSIs is extremely large, the image label usually contains only slide-level label or limited pixel-level labels. The current mainstream approach adopts multi-instance learning to predict Gleason grades. However, some methods only considering the slide-level label ignore the limited pixel-level labels containing rich local information. Furthermore, the method of additionally considering the pixel-level labels ignores the inaccuracy of pixel-level labels. To address these problems, we propose a mixed supervision Transformer based on the multiple instance learning framework. The model utilizes both slide-level label and instance-level labels to achieve more accurate Gleason grading at the slide level. The impact of inaccurate instance-level labels is further reduced by introducing an efficient random masking strategy in the mixed supervision training process. We achieve the state-of-the-art performance on the SICAPv2 dataset, and the visual analysis shows the accurate prediction results of instance level. The source code is available at https://github.com/bianhao123/Mixed_supervision.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源