论文标题
基于光子带隙超材料的可扩展超导量子模拟器具有远程连接性
A scalable superconducting quantum simulator with long-range connectivity based on a photonic bandgap metamaterial
论文作者
论文摘要
实验室中多体量子系统的合成可以帮助您进一步了解量子材料的紧急行为,量子材料的出现行为可以提供改进的能量转换,信号传输或信息处理的方法。尽管大多数可工程多体系统或量子模拟器由与局部相互作用的晶格上的粒子组成,但具有长距离相互作用的量子系统对于模型尤其具有挑战性,并且由于量子纠缠和相关性的快速时空生长和相关性的快速时空生长而引起的研究特别有趣。在这里,我们基于局部连接到可扩展的光子伴侣超材料的超导量子的线性阵列提出可扩展的量子模拟器结构。超材料既是量子介导Qubit Qubit相互作用的量子总线,又是多路复用Qubit-State测量的读数通道。作为初始演示,我们实现了一维玻色 - 哈伯德模型的10量模拟器,其原位可调性的跳跃范围和现场相互作用。我们使用基于量子多体混乱的测量效率方案来表征系统的哈密顿量。此外,我们研究了系统的多体淬灭动力学,通过全局比特弦统计揭示了随着跳跃范围的增加,预测的跨界从整合性到奇异性的交叉性。此处介绍的超材料量子总线体系结构可以扩展到二维晶格系统,并用于产生各种量子相互作用,扩展了可访问的汉密尔顿人进行模拟量子模拟,并提高了实现基于栅极计算的量子电路的灵活性
Synthesis of many-body quantum systems in the laboratory can help provide further insight into the emergent behavior of quantum materials, whose properties may provide improved methods for energy conversion, signal transport, or information processing. While the majority of engineerable many-body systems, or quantum simulators, consist of particles on a lattice with local interactions, quantum systems featuring long-range interactions are particularly challenging to model and interesting to study due to the rapid spatio-temporal growth of quantum entanglement and correlations. Here, we present a scalable quantum simulator architecture based on a linear array of superconducting qubits locally connected to an extensible photonic-bandgap metamaterial. The metamaterial acts both as a quantum bus mediating qubit-qubit interactions, and as a readout channel for multiplexed qubit-state measurement. As an initial demonstration, we realize a 10-qubit simulator of the one-dimensional Bose-Hubbard model with in situ tunability of both the hopping range and the on-site interaction. We characterize the Hamiltonian of the system using a measurement-efficient protocol based on quantum many-body chaos. Further, we study the many-body quench dynamics of the system, revealing through global bit-string statistics the predicted crossover from integrability to ergodicity as the hopping range increases. The metamaterial quantum bus architecture presented here can be extended to two-dimensional lattice systems and used to generate a wide range of qubit interactions, expanding the accessible Hamiltonians for analog quantum simulation and increasing the flexibility in implementing quantum circuits for gate-based computations