论文标题
相对论振荡器的拉格朗日系统的进一步多样性结果
A further multiplicity result for Lagrangian systems of relativistic oscillators
论文作者
论文摘要
这是我们在[4]和[5]之后的第三篇论文,讲述了Brezis和Mawhin在[1]中与我们的最小值定理([2],[3])共同应用,以获取类型$ $ \ case {(ϕ(U'')'= \ nabla_xf(\ nabla_xf(cr)的多个问题解决方案。 u(0)= u(t)\,\ hskip 3pt u'(0)= u'(t)\ cr} $$,它是一组Lipschitzian函数的合适功能的全局最小值。还制定了一个具有挑战性的猜想。
This is our third paper, after [4] and [5], about a joint application of the theory developed by Brezis and Mawhin in [1] with our minimax theorems ([2], [3]) to get multiple solutions of problems of the type $$\cases{(ϕ(u'))'=\nabla_xF(t,u) & in $[0,T]$\cr & \cr u(0)=u(T)\ , \hskip 3pt u'(0)=u'(T)\cr}$$ which are global minima of a suitable functional over a set of Lipschitzian functions. A challenging conjecture is also formulated.