论文标题
在算法策划的平台上建模内容创建者激励措施
Modeling Content Creator Incentives on Algorithm-Curated Platforms
论文作者
论文摘要
内容创建者竞争用户的关注。它们的影响力至关重要取决于开发人员在在线平台上做出的算法选择。为了最大程度地提高曝光率,许多创作者从策略上适应了,如庞大的搜索引擎优化行业这样的例子所证明。这会为有限的用户注意池竞争。我们在所谓的曝光游戏中正式化了这些动态,这是算法引起的激励措施的模型,包括现代化分解和(深)两个较高的架构。我们证明,看似无害的算法选择,例如非负和不受限制的分解,显着影响了曝光游戏中(NASH)平衡的存在和特征。我们将(例如)预部部门审核对创建者行为模型(例如曝光游戏)进行使用。这样的审核可以确定所需内容和激励内容之间的错位,从而补充诸如内容过滤和节制之类的事后措施。为此,我们提出了用于在曝光游戏中找到平衡的工具,并说明了Movielens和LastFM数据集的审核结果。除其他外,我们发现,战略性产生的内容在算法探索和内容多样性之间表现出强烈的依赖,以及模型表达和对基于性别的用户和创建者群体的偏见。
Content creators compete for user attention. Their reach crucially depends on algorithmic choices made by developers on online platforms. To maximize exposure, many creators adapt strategically, as evidenced by examples like the sprawling search engine optimization industry. This begets competition for the finite user attention pool. We formalize these dynamics in what we call an exposure game, a model of incentives induced by algorithms, including modern factorization and (deep) two-tower architectures. We prove that seemingly innocuous algorithmic choices, e.g., non-negative vs. unconstrained factorization, significantly affect the existence and character of (Nash) equilibria in exposure games. We proffer use of creator behavior models, like exposure games, for an (ex-ante) pre-deployment audit. Such an audit can identify misalignment between desirable and incentivized content, and thus complement post-hoc measures like content filtering and moderation. To this end, we propose tools for numerically finding equilibria in exposure games, and illustrate results of an audit on the MovieLens and LastFM datasets. Among else, we find that the strategically produced content exhibits strong dependence between algorithmic exploration and content diversity, and between model expressivity and bias towards gender-based user and creator groups.