论文标题

使用不断发展的图形理论的车辆社交网络的间接社会信任模型

An Indirect Social Trust Model for Vehicular Social Networks Using Evolving Graph Theory

论文作者

Eiza, Max Hashem, Ta, Vinh Thong

论文摘要

本文研究了在高度动态的社交网络(例如车辆社交网络(VSN))中建立间接信任关系的日益重要性和随之而来的挑战。 VSN是移动社交网络,旨在在道路上的旅行者之间建立社交联系。除了匹配两个用户之间的兴趣外,社会信任对于成功建立和培养社会关系至关重要。但是,VSN的独特特征构成了许多挑战,例如对间接社会信任建模的不确定性,主观性和不强制性。此外,文献中当前的信任模型无法充分解决VSN中的信任传播。我们使用不断发展的图理论和Paillier Cryptosystem提出了一种新型的间接社会信任模型,以实现VSN。我们将VSN视为一个高度动态的社会发展图,在该图中,车辆之间的社会联系具有可信赖的因素,随着时间的流逝而发展。该因素是根据所涉及各方的行为,观点,距离和沟通指标来估算的。拟议的模型采用Paillier加密系统的同构属性,目的是在组合多种意见以建立间接信任的关系时目标问题。通过分析计算和通信复杂性,我们显示了所提出的模型的生存能力及其间接信任计算算法的效率。

The increasing importance and consequent challenges of establishing indirect trusted relationships in highly dynamic social networks such as vehicular social networks (VSNs), are investigated in this paper. VSNs are mobile social networks that aim to create social links among travellers on the roads. Besides matching interests between two users, social trust is essential to successfully establish and nurture a social relationship. However, the unique characteristics of VSNs pose many challenges such as uncertainty, subjectivity and intransitivity to indirect social trust modelling. Furthermore, the current trust models in the literature inadequately address trust propagation in VSNs. We propose a novel indirect social trust model for VSNs using evolving graph theory and the Paillier cryptosystem. We consider the VSN as a highly dynamic social evolving graph where social ties among vehicles hold a trustworthiness factor that evolves over time. This factor is estimated based on the behaviours, opinions, distances, and communication metrics of the parties involved. Employing the homomorphic property of the Paillier cryptosystem, the proposed model targets the subjectivity problem when combining multiple opinions to establish an indirect trusted relationship. Through analysis of computational and communication complexities, we show the viability of the proposed model and the efficiency of its indirect trust computation algorithm.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源