论文标题
属性图的表示学习框架
A Representation Learning Framework for Property Graphs
论文作者
论文摘要
图表上的表示学习(也称为图形嵌入)显示了其对一系列机器学习应用程序(例如分类,预测和建议)的重大影响。但是,现有的工作在很大程度上忽略了现代应用程序中图和边缘的属性(或属性)中包含的丰富信息,例如,这些信息(例如由属性图表示)。迄今为止,大多数现有的图形嵌入方法要么仅关注图形拓扑的普通图,要么仅考虑节点上的属性。我们提出了PGE,这是一个图形表示学习框架,将节点和边缘属性都包含到图形嵌入过程中。 PGE使用节点聚类来分配偏差来区分节点的邻居,并利用多个数据驱动的矩阵来汇总基于偏见策略采样的邻居的属性信息。 PGE采用了流行的邻居聚合归纳模型。我们通过展示PGE如何获得更好的嵌入结果来提供有关方法的疗效的详细分析,并验证PGE的性能,而不是在基准应用程序上的最先进的图形嵌入方法,例如节点分类和对现实世界数据集的链接预测。
Representation learning on graphs, also called graph embedding, has demonstrated its significant impact on a series of machine learning applications such as classification, prediction and recommendation. However, existing work has largely ignored the rich information contained in the properties (or attributes) of both nodes and edges of graphs in modern applications, e.g., those represented by property graphs. To date, most existing graph embedding methods either focus on plain graphs with only the graph topology, or consider properties on nodes only. We propose PGE, a graph representation learning framework that incorporates both node and edge properties into the graph embedding procedure. PGE uses node clustering to assign biases to differentiate neighbors of a node and leverages multiple data-driven matrices to aggregate the property information of neighbors sampled based on a biased strategy. PGE adopts the popular inductive model for neighborhood aggregation. We provide detailed analyses on the efficacy of our method and validate the performance of PGE by showing how PGE achieves better embedding results than the state-of-the-art graph embedding methods on benchmark applications such as node classification and link prediction over real-world datasets.