论文标题
4D时间医学图像生成的扩散可变形模型
Diffusion Deformable Model for 4D Temporal Medical Image Generation
论文作者
论文摘要
具有3D+T(4D)信息的时间体积图像通常用于医学成像中,以统计分析时间动力学或捕获疾病进展。尽管已经对自然图像的基于深度学习的生成模型进行了广泛的研究,但时间医学图像产生(例如4D心脏量数据)的方法受到限制。在这项工作中,我们提出了一个新颖的深度学习模型,该模型在源和目标体积之间产生了中间时间的体积。具体而言,我们提出了一个扩散可变形模型(DDM),通过调整最近已广泛研究的脱糖性扩散概率模型,该模型已广泛研究。我们提出的DDM由扩散和变形模块组成,因此DDM可以在源和目标量之间学习空间变形信息,并提供一个潜在的代码,用于沿着测量路径生成中间帧。一旦训练了我们的模型,从扩散模块中估算的潜在代码将简单地插入并馈入变形模块,这使DDM能够沿着连续轨迹生成时间帧,同时保留源图像的拓扑。我们证明了每个受试者舒张期和收缩期相之间的4D心脏MR图像产生的提议方法。与现有的变形方法相比,我们的DDM在时间体积生成上实现了高性能。
Temporal volume images with 3D+t (4D) information are often used in medical imaging to statistically analyze temporal dynamics or capture disease progression. Although deep-learning-based generative models for natural images have been extensively studied, approaches for temporal medical image generation such as 4D cardiac volume data are limited. In this work, we present a novel deep learning model that generates intermediate temporal volumes between source and target volumes. Specifically, we propose a diffusion deformable model (DDM) by adapting the denoising diffusion probabilistic model that has recently been widely investigated for realistic image generation. Our proposed DDM is composed of the diffusion and the deformation modules so that DDM can learn spatial deformation information between the source and target volumes and provide a latent code for generating intermediate frames along a geodesic path. Once our model is trained, the latent code estimated from the diffusion module is simply interpolated and fed into the deformation module, which enables DDM to generate temporal frames along the continuous trajectory while preserving the topology of the source image. We demonstrate the proposed method with the 4D cardiac MR image generation between the diastolic and systolic phases for each subject. Compared to the existing deformation methods, our DDM achieves high performance on temporal volume generation.