论文标题
量子理论,热梯度和弯曲的欧几里得空间
Quantum theory, thermal gradients and the curved Euclidean space
论文作者
论文摘要
通过时间的分析延续到假想时间获得的欧几里得空间用于建模热系统。在这项工作中,通过在温度浴中温度的空间变化与欧几里得空间的曲率之间形成等效性,从空间热变化的系统中迈出了进一步的步骤。温度的变化是重铸为公制的变化,导致弯曲的欧几里得空间。通过分析polyakov循环,分区函数和相关函数的周期性来证实等效性。用于中性标量场的小型度量扰动,用于分区函数,用于小型度量扰动,诸如能量,熵和Helmholtz自由能(诸如熵和Helmholtz的自由能)之类的体积热力学特性。在弯曲的欧几里得空间中求解了在带有空间热梯度的热浴中横穿带有空间热梯度的热浴中的狄拉克方程。与仅检查散装热力学特性相比,狄拉克纺纱材特征态所表现出的基本行为可能提供了一种可能在基础水平上验证理论的可能机制。此外,为了验证经典力学级别的等价性,在经典的背景下分析了地球方程。数学设备是从重力诱导的时空曲率中从量子理论物理学借来的。由于可以在QCD或QED能量下获得空间热变化,因此提出的公式可以通过实验验证可能是可行的。
The Euclidean space, obtained by the analytical continuation of time, to an imaginary time, is used to model thermal systems. In this work, it is taken a step further to systems with spatial thermal variation, by developing an equivalence between the spatial variation of temperature in a thermal bath and the curvature of the Euclidean space. The variation in temperature is recast as a variation in the metric, leading to a curved Euclidean space. The equivalence is substantiated by analyzing the Polyakov loop, the partition function and the periodicity of the correlation function. The bulk thermodynamic properties like the energy, entropy and the Helmholtz free energy are calculated from the partition function, for small metric perturbations, for a neutral scalar field. The Dirac equation for an external Dirac spinor, traversing in a thermal bath with spatial thermal gradients, is solved in the curved Euclidean space. The fundamental behavior exhibited by the Dirac spinor eigenstate, may provide a possible mechanism to validate the theory, at a more basal level, than examining only bulk thermodynamic properties. Furthermore, in order to verify the equivalence at the level of classical mechanics, the geodesic equation is analyzed in a classical backdrop. The mathematical apparatus is borrowed from the physics of quantum theory in a gravity-induced space-time curvature. As spatial thermal variations are obtainable at QCD or QED energies, it may be feasible for the proposed formulation to be validated experimentally.