论文标题
使用近似单调局部搜索的更快的指数时间近似算法
Faster Exponential-Time Approximation Algorithms Using Approximate Monotone Local Search
论文作者
论文摘要
我们通过在单调近似和单调子集最小化问题的参数化近似和指数时间近似算法之间建立联系,从而概括了Fomin,Gaspers,Lokshtanov和Saurabh的单调局部搜索方法[J.ACM 2019]。在单调子集最小化问题中,输入隐式描述了一个尺寸$ n $的宇宙中的非空套家族,该家族已在超级集中封闭。任务是在这个家庭中找到最低的基数。 Broadly speaking, we use approximate monotone local search to show that a parameterized $α$-approximation algorithm that runs in $c^k \cdot n^{O(1)}$ time, where $k$ is the solution size, can be used to derive an $α$-approximation randomized algorithm that runs in $d^n \cdot n^{O(1)}$ time,其中$ d $是$ d \ in(1,1+ \ frac {c-1}α)$中的唯一值,以至于$ \ Mathcal {d}(\ frac {1}α\ | \ | \ | \ | \ frac {d-1} {d-1} {c-1} {c-1} {c-1} {c-1} {c-1} {c-1} {c-1})= \ frac {\ ln c} $ is $ is \ raS $ as \ raval | b) kullback-leibler差异。这个运行时间与Fomin等人的时间相匹配。对于$α= 1 $,对于任何$ c> 1 $,当$α> 1 $时,严格来说要好得多。此外,我们还表明,可以在运行时间内以次指数乘法因子为代价来取代此结果。 我们通过得出有关顶点盖的新的和更快的指数近似算法,$ 3 $敲打集,定向反馈顶点集,定向子集反馈顶点集,定向奇数循环横向和无方向的MultiDut来证明近似单调局部搜索的潜力。例如,我们将获得$ 1.1 $ - Approximation算法,用于顶点封面,运行时间$ 1.114^n \ cdot n^{o(1)} $,改善了以前最著名的$ 1.1 $ 1.1 $ -AppRoximation-time运行的$ 1.127^n \ cdot n \ cdot n^\ cdot n^{o(1)$(1)$ by bourge al al al al al al bouries et al。 [DAM 2011]。
We generalize the monotone local search approach of Fomin, Gaspers, Lokshtanov and Saurabh [J.ACM 2019], by establishing a connection between parameterized approximation and exponential-time approximation algorithms for monotone subset minimization problems. In a monotone subset minimization problem the input implicitly describes a non-empty set family over a universe of size $n$ which is closed under taking supersets. The task is to find a minimum cardinality set in this family. Broadly speaking, we use approximate monotone local search to show that a parameterized $α$-approximation algorithm that runs in $c^k \cdot n^{O(1)}$ time, where $k$ is the solution size, can be used to derive an $α$-approximation randomized algorithm that runs in $d^n \cdot n^{O(1)}$ time, where $d$ is the unique value in $d \in (1,1+\frac{c-1}α)$ such that $\mathcal{D}(\frac{1}α\|\frac{d-1}{c-1})=\frac{\ln c}α$ and $\mathcal{D}(a \|b)$ is the Kullback-Leibler divergence. This running time matches that of Fomin et al. for $α=1$, and is strictly better when $α>1$, for any $c > 1$. Furthermore, we also show that this result can be derandomized at the expense of a sub-exponential multiplicative factor in the running time. We demonstrate the potential of approximate monotone local search by deriving new and faster exponential approximation algorithms for Vertex Cover, $3$-Hitting Set, Directed Feedback Vertex Set, Directed Subset Feedback Vertex Set, Directed Odd Cycle Transversal and Undirected Multicut. For instance, we get a $1.1$-approximation algorithm for Vertex Cover with running time $1.114^n \cdot n^{O(1)}$, improving upon the previously best known $1.1$-approximation running in time $1.127^n \cdot n^{O(1)}$ by Bourgeois et al. [DAM 2011].