论文标题
来自古怪轨道的潮汐破坏事件以及从值得注意的asassn-14ko中学到的经验教训
Tidal disruption events from eccentric orbits and lessons learned from the noteworthy ASASSN-14ko
论文作者
论文摘要
恒星在绑定的轨道上放牧超大的黑洞(SMBH)可能会在潮汐破坏中幸存下来,从而引起周期性的耀斑。受到最近发现的定期核瞬态Asassn-14KO的启发,这是重复潮汐破坏事件(TDE)的有前途的候选人(TDE),我们研究了在偏心轨道上接近SMBH的恒星的潮汐变形。通过分析和流体动力学方法,我们显示恒星的整体潮汐变形与抛物线轨道中的潮汐变形相似,前提是偏心率高于临界值。这允许人们利用抛物线遇到的现有仿真库来计算偏心TDE中的质量下降率。我们发现,偏心TDE的耀斑结构对SMBH质量和轨道时期均显示出复杂的依赖性。对于相对较短的恒星SMBH,我们预测寿命持续时间明显短于抛物线TDE的持续时间,如果可以独立测量SMBH的质量,则可以用于预测重复事件。使用绝热质量损失模型,我们研究了多个通道上的耀斑演化,并且表明恒星比主序列星可以生存更多的通道。我们将这个理论框架应用于重复的TDE候选Asassn-14KO,并建议其反复的耀斑起源于中等范围($ m \ gtrsim 1 \ mathrm {m_ \ odot} $),扩展($ \ $ \ $ \ $ \ $ \ $ \ nibive) SMBH。对多种潮汐相互作用的未来流体动力学模拟将使单个耀斑结构和多种耀斑的演变实现现实模型。
Stars grazing supermassive black holes (SMBHs) on bound orbits may survive tidal disruption, causing periodic flares. Inspired by the recent discovery of the periodic nuclear transient ASASSN-14ko, a promising candidate for a repeating tidal disruption event (TDE), we study the tidal deformation of stars approaching SMBHs on eccentric orbits. With both analytical and hydrodynamics methods, we show the overall tidal deformation of a star is similar to that in a parabolic orbit provided that the eccentricity is above a critical value. This allows one to make use of existing simulation libraries from parabolic encounters to calculate the mass fallback rate in eccentric TDEs. We find the flare structures of eccentric TDEs show a complicated dependence on both the SMBH mass and the orbital period. For stars orbiting SMBHs with relatively short periods, we predict significantly shorter-lived duration flares than those in parabolic TDEs, which can be used to predict repeating events if the mass of the SMBH can be independently measured. Using an adiabatic mass loss model, we study the flare evolution over multiple passages, and show the evolved stars can survive many more passages than main sequence stars. We apply this theoretical framework to the repeating TDE candidate ASASSN-14ko and suggest that its recurrent flares originate from a moderately massive ($M\gtrsim 1 \mathrm{M_\odot}$), extended ($\approx$ a few $\mathrm{R_\odot}$), evolved star on a grazing, bound orbit around the SMBH. Future hydrodynamics simulations of multiple tidal interactions will enable realistic models on the individual flare structure and the evolution over multiple flares.