论文标题
将两个较高的模型分开,以获得有效和隐私的跨设备联合建议
Split Two-Tower Model for Efficient and Privacy-Preserving Cross-device Federated Recommendation
论文作者
论文摘要
联合建议可以减轻传统建议的系统隐私风险,因为它允许模型培训和在线推断,而无需集中的用户数据收集。大多数现有作品都假定所有用户设备都可以使用,并且足以参与联合学习。但是,在实践中,设计用于准确预测和大量项目数据的复杂建议模型会导致对受资源受限的用户设备的高计算和通信成本,从而导致性能或培训失败差。因此,如何有效地压缩计算和通信开销,以在无处不在的移动设备之间实现有效的联邦建议仍然是一个重大挑战。本文将分裂学习引入了两个塔建议模型中,并提出了STTFEDREC,这是一种隐私权和有效的联合推荐框架的跨设备。 STTFEDREC通过将项目模型的训练和计算从用户设备分配到性能驱动的服务器来减少本地计算。带有项目模型的服务器提供了低维项目嵌入,而不是将原始项目数据提供给用户设备,以进行本地培训和在线推断,从而实现服务器广播压缩。用户设备只需要使用缓存的用户嵌入来执行相似性计算即可实现有效的在线推断。我们还提出了一个混淆的项目请求策略和多方循环秘密共享链,以增强模型培训的隐私保护。在两个公共数据集上进行的实验表明,在最佳情况下,STTFEDREC将基线模型的平均计算时间和基线模型的通信大小提高了约40次和42次,并具有平衡的建议精度。
Federated Recommendation can mitigate the systematical privacy risks of traditional recommendation since it allows the model training and online inferring without centralized user data collection. Most existing works assume that all user devices are available and adequate to participate in the Federated Learning. However, in practice, the complex recommendation models designed for accurate prediction and massive item data cause a high computation and communication cost to the resource-constrained user device, resulting in poor performance or training failure. Therefore, how to effectively compress the computation and communication overhead to achieve efficient federated recommendations across ubiquitous mobile devices remains a significant challenge. This paper introduces split learning into the two-tower recommendation models and proposes STTFedRec, a privacy-preserving and efficient cross-device federated recommendation framework. STTFedRec achieves local computation reduction by splitting the training and computation of the item model from user devices to a performance-powered server. The server with the item model provides low-dimensional item embeddings instead of raw item data to the user devices for local training and online inferring, achieving server broadcast compression. The user devices only need to perform similarity calculations with cached user embeddings to achieve efficient online inferring. We also propose an obfuscated item request strategy and multi-party circular secret sharing chain to enhance the privacy protection of model training. The experiments conducted on two public datasets demonstrate that STTFedRec improves the average computation time and communication size of the baseline models by about 40 times and 42 times in the best-case scenario with balanced recommendation accuracy.