论文标题
MACSA:具有多模式细粒对齐注释的多模式方面的情感分析数据集
MACSA: A Multimodal Aspect-Category Sentiment Analysis Dataset with Multimodal Fine-grained Aligned Annotations
论文作者
论文摘要
多模式的细粒情感分析最近由于其广泛的应用而引起了人们的关注。但是,现有的多模式细颗粒情感数据集最关注注释文本中的细粒元素,但忽略图像中的元素,这导致视觉内容中的细粒元素无法得到应有的全部关注。在本文中,我们提出了一个新的数据集,即多模式方面类别情感分析(MACSA)数据集,其中包含超过21k的文本图像对。该数据集为文本和视觉内容提供细粒度的注释,并首先将方面类别用作枢轴,以对齐两种模态之间的细粒元素。基于我们的数据集,我们提出了多模式ACSA任务和基于多模式的对准模型(MGAM),该模型(MGAM)采用了细粒度的跨模式融合方法。实验结果表明,我们的方法可以促进对此语料库的未来研究的基线比较。我们将公开提供数据集和代码。
Multimodal fine-grained sentiment analysis has recently attracted increasing attention due to its broad applications. However, the existing multimodal fine-grained sentiment datasets most focus on annotating the fine-grained elements in text but ignore those in images, which leads to the fine-grained elements in visual content not receiving the full attention they deserve. In this paper, we propose a new dataset, the Multimodal Aspect-Category Sentiment Analysis (MACSA) dataset, which contains more than 21K text-image pairs. The dataset provides fine-grained annotations for both textual and visual content and firstly uses the aspect category as the pivot to align the fine-grained elements between the two modalities. Based on our dataset, we propose the Multimodal ACSA task and a multimodal graph-based aligned model (MGAM), which adopts a fine-grained cross-modal fusion method. Experimental results show that our method can facilitate the baseline comparison for future research on this corpus. We will make the dataset and code publicly available.