论文标题
行人3D边界盒预测
Pedestrian 3D Bounding Box Prediction
论文作者
论文摘要
安全仍然是自动驾驶的主要问题,为了在全球部署,他们需要提前充分预测行人的动议。尽管对粗粒(人体中心的预测)和细粒度预测(人体关键点的预测)进行了大量研究,但我们专注于3D边界框,这是对人类的合理估计,而无需对自动驾驶汽车进行复杂的运动细节进行建模。这使得在现实世界中更长的视野中进行了灵活性。我们建议这个新问题,并为行人的3D边界框预测提供了一个简单而有效的模型。该方法遵循基于复发性神经网络的编码器架构架构,我们的实验在合成(JTA)和现实世界(Nuscenes)数据集中显示出其有效性。博学的表示形式具有有用的信息来增强其他任务的执行,例如行动预期。我们的代码可在线提供:https://github.com/vita-epfl/bounding-box-prediction
Safety is still the main issue of autonomous driving, and in order to be globally deployed, they need to predict pedestrians' motions sufficiently in advance. While there is a lot of research on coarse-grained (human center prediction) and fine-grained predictions (human body keypoints prediction), we focus on 3D bounding boxes, which are reasonable estimates of humans without modeling complex motion details for autonomous vehicles. This gives the flexibility to predict in longer horizons in real-world settings. We suggest this new problem and present a simple yet effective model for pedestrians' 3D bounding box prediction. This method follows an encoder-decoder architecture based on recurrent neural networks, and our experiments show its effectiveness in both the synthetic (JTA) and real-world (NuScenes) datasets. The learned representation has useful information to enhance the performance of other tasks, such as action anticipation. Our code is available online: https://github.com/vita-epfl/bounding-box-prediction