论文标题

使用卷积神经网络和STFT技术,使用深度转移学习的心电图分类

ECG Heartbeat classification using deep transfer learning with Convolutional Neural Network and STFT technique

论文作者

Cao, Minh, Zhao, Tianqi, Li, Yanxun, Zhang, Wenhao, Benharash, Peyman, Ramezani, Ramin

论文摘要

心电图(ECG)是一种简单的非侵入性措施,用于识别与心脏不规则的心律无关的问题,称为心律不齐。尽管人工智能和机器学习被用于广泛的与医疗保健相关的应用程序和数据集中,但近年来已经提出了许多使用深度学习方法的心律失常分类器。但是,可以从中构建和评估机器学习模型的可用数据集的大小通常很小,并且缺乏通知的公共ECG数据集很明显。在本文中,我们提出了一个深厚的转移学习框架,旨在在小型培训数据集上进行分类。所提出的方法是根据AAMI EC57标准,用MIT-BIH心律失常数据集微调通用图像分类器RESNET-18。本文进一步研究了许多现有的深度学习模型,这些模型未能避免根据AAMI建议泄漏数据。我们比较不同的数据拆分方法如何影响模型性能。这项比较研究表明,在使用包括MIT-BIH心律失常数据集在内时,心律不齐分类的未来工作应遵循AAMI EC57标准。

Electrocardiogram (ECG) is a simple non-invasive measure to identify heart-related issues such as irregular heartbeats known as arrhythmias. While artificial intelligence and machine learning is being utilized in a wide range of healthcare related applications and datasets, many arrhythmia classifiers using deep learning methods have been proposed in recent years. However, sizes of the available datasets from which to build and assess machine learning models is often very small and the lack of well-annotated public ECG datasets is evident. In this paper, we propose a deep transfer learning framework that is aimed to perform classification on a small size training dataset. The proposed method is to fine-tune a general-purpose image classifier ResNet-18 with MIT-BIH arrhythmia dataset in accordance with the AAMI EC57 standard. This paper further investigates many existing deep learning models that have failed to avoid data leakage against AAMI recommendations. We compare how different data split methods impact the model performance. This comparison study implies that future work in arrhythmia classification should follow the AAMI EC57 standard when using any including MIT-BIH arrhythmia dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源