论文标题
Mittag-Leffler模块和可定义的子类别。 ii
Mittag-Leffler modules and definable subcategories. II
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
In this note I take the opportunity to correct the last statement of Part I of same title and continue the study of uniform purity of epimorphisms in order to derive the main result, which states that--provided $R_R\in \langle\cal K\rangle$, equivalently, $\langle \cal L\rangle$ (the definable subcategory generated by $\cal L$) contains all absolutely pure left modules--every countably generated $\cal K$-Mittag-Leffler module in $\langle \cal L\rangle$ is a direct summand of a $\langle \cal L\rangle$-preenvelope of a union of an $\cal L$-pure $ω$-chain of finitely presented modules. In conclusion I present a number of examples that starts with and grew out of the study of $\cal L$-purity (of monomorphisms in $\Bbb{Z}$-Mod) for $\cal L$, the definable subcategory of divisible abelian groups. Rings that get particular attention in this are RD-rings, Warfield rings and (the newly introduced) high rings.