论文标题

用于建模原子相互作用的球形通道

Spherical Channels for Modeling Atomic Interactions

论文作者

Zitnick, C. Lawrence, Das, Abhishek, Kolluru, Adeesh, Lan, Janice, Shuaibi, Muhammed, Sriram, Anuroop, Ulissi, Zachary, Wood, Brandon

论文摘要

对原子系统的能量和力进行建模是计算化学中的一个基本问题,有可能帮助解决世界上许多最紧迫的问题,包括与能源稀缺和气候变化有关的问题。这些计算传统上是使用密度功能理论进行的,这在计算上非常昂贵。机器学习有可能从天数或几小时到几秒钟大幅提高这些计算的效率。我们建议球形通道网络(SCN)对原子能量和力进行建模。 SCN是一个图神经网络,其中节点代表原子并边缘其相邻原子。原子嵌入是使用球形谐波表示的一组球形函数,称为球形通道。我们证明,通过基于3D边缘方向旋转嵌入式,可以在保持消息的旋转率时使用更多信息。虽然均衡性是理想的属性,但我们发现,通过在消息传递和聚合中放松这种约束,可以提高准确性。我们在能量和力预测的大规模开放催化剂数据集中证明了最先进的结果,以预测众多任务和指标。

Modeling the energy and forces of atomic systems is a fundamental problem in computational chemistry with the potential to help address many of the world's most pressing problems, including those related to energy scarcity and climate change. These calculations are traditionally performed using Density Functional Theory, which is computationally very expensive. Machine learning has the potential to dramatically improve the efficiency of these calculations from days or hours to seconds. We propose the Spherical Channel Network (SCN) to model atomic energies and forces. The SCN is a graph neural network where nodes represent atoms and edges their neighboring atoms. The atom embeddings are a set of spherical functions, called spherical channels, represented using spherical harmonics. We demonstrate, that by rotating the embeddings based on the 3D edge orientation, more information may be utilized while maintaining the rotational equivariance of the messages. While equivariance is a desirable property, we find that by relaxing this constraint in both message passing and aggregation, improved accuracy may be achieved. We demonstrate state-of-the-art results on the large-scale Open Catalyst dataset in both energy and force prediction for numerous tasks and metrics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源