论文标题
Matryoshka:通过隐藏模型中隐藏私人ML数据的功能
Matryoshka: Stealing Functionality of Private ML Data by Hiding Models in Model
论文作者
论文摘要
在本文中,我们提出了一种名为Matryoshka的新型内部攻击,该攻击采用了一个无关紧要的计划与公开的DNN模型作为覆盖多个秘密模型的载体模型,以记住存储在本地数据中心中的私人ML数据的功能。我们没有将载体模型的参数视为位字符串并应用常规隐肌,而是设计了一种新型的参数共享方法,该方法利用了载体模型的学习能力来隐藏信息。 Matryoshka同时实现:(i)高容量 - 由于载体模型几乎没有效用损失,Matryoshka可以隐藏一个26倍较大的秘密模型或8个跨越载体模型中不同应用程序域的不同体系结构的秘密模型,这两个模型都无法使用现有的静电术技术来完成。 (ii)解码效率 - 一旦下载了已发布的运营商模型,外部颜色可以将隐藏模型从运营商模型中独家解码,只有几个整数秘密和隐藏模型体系结构的知识; (iii)有效性 - 此外,几乎所有恢复的模型的性能都一样,就好像它是在私人数据上独立培训的; (iv)鲁棒性 - 自然实施信息冗余,以在出版之前对运营商上的常见后加工技术实现弹性; (v)秘密性 - 具有不同知识水平的模型检查员几乎不能将载体模型与正常模型区分开。
In this paper, we present a novel insider attack called Matryoshka, which employs an irrelevant scheduled-to-publish DNN model as a carrier model for covert transmission of multiple secret models which memorize the functionality of private ML data stored in local data centers. Instead of treating the parameters of the carrier model as bit strings and applying conventional steganography, we devise a novel parameter sharing approach which exploits the learning capacity of the carrier model for information hiding. Matryoshka simultaneously achieves: (i) High Capacity -- With almost no utility loss of the carrier model, Matryoshka can hide a 26x larger secret model or 8 secret models of diverse architectures spanning different application domains in the carrier model, neither of which can be done with existing steganography techniques; (ii) Decoding Efficiency -- once downloading the published carrier model, an outside colluder can exclusively decode the hidden models from the carrier model with only several integer secrets and the knowledge of the hidden model architecture; (iii) Effectiveness -- Moreover, almost all the recovered models have similar performance as if it were trained independently on the private data; (iv) Robustness -- Information redundancy is naturally implemented to achieve resilience against common post-processing techniques on the carrier before its publishing; (v) Covertness -- A model inspector with different levels of prior knowledge could hardly differentiate a carrier model from a normal model.