论文标题

稀疏X射线日志成像的几何参数估计

Geometry parameter estimation for sparse X-ray log imaging

论文作者

Senchukova, Angelina, Suuronen, Jarkko, Heikkinen, Jere, Roininen, Lassi

论文摘要

我们考虑工业锯木厂风扇束X射线断层扫描中的几何参数估计。在这样的工业环境中,扫描仪并不总是允许识别源检测对的位置,这会产生未知几何的问题。这项工作考虑了基于校准对象的几何估计方法。我们使用一组5个参数来参数几何形状。为了估计几何参数,我们计算已知大小的校准对象图像与其过滤后的反射重建之间的最大互相关,并将差分进化用作优化者。该方法允许通过全角度测量以及稀疏测量值估算几何参数。我们从数值上显示,可以将不同的参数集用于无伪影重建。我们用一阶各向同性的cauchy差异来部署贝叶斯倒置,以重建合成和真实锯木厂数据,并具有很少的测量值。

We consider geometry parameter estimation in industrial sawmill fan-beam X-ray tomography. In such industrial settings, scanners do not always allow identification of the location of the source-detector pair, which creates the issue of unknown geometry. This work considers an approach for geometry estimation based on the calibration object. We parametrise the geometry using a set of 5 parameters. To estimate the geometry parameters, we calculate the maximum cross-correlation between a known-sized calibration object image and its filtered backprojection reconstruction and use differential evolution as an optimiser. The approach allows estimating geometry parameters from full-angle measurements as well as from sparse measurements. We show numerically that different sets of parameters can be used for artefact-free reconstruction. We deploy Bayesian inversion with first-order isotropic Cauchy difference priors for reconstruction of synthetic and real sawmill data with a very low number of measurements.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源