论文标题
通过纳米织物织物的气相组装消除高性能SI阳极中的溶剂和聚合物
Eliminating solvents and polymers in high-performance Si anodes by gas-phase assembly of nanowire fabrics
论文作者
论文摘要
开发可持续的电池电极制造方法尤其是合金型活性材料(例如硅)的压力,这些材料通常需要额外的基于能量的基于溶剂的处理,以通过缓冲矩阵加强它们。这项工作引入了一种新方法,将SI阳极作为任意厚度的连续,坚韧的织物,而无需处理溶剂,聚合物粘合剂,碳添加剂或任何加强基质。阳极由直接从气相中的悬浮液组成的长Si纳米线的渗透网络组成,它们通过浮动催化剂化学蒸气沉积而生长。在类似纺织品的网络结构中,高于75 wt。%的高Si含量会导致高性能电极性能。对于所有产生的厚度,它们的重量计为2330 mAh g-1,在C/20的所有厚度时,在C/20时达到9.3 mAh cm-2的面积能力,在1C时达到3.4 mAh cm-2(3.4 mg cm-cm-2)。评级数据的分析可提供高运输系数(6.6x10-12 m2 S-1),这是由于平面外电导率(0.6 S M-1)和较短的固态扩散长度。 SI在延伸循环后仍然是延长元件的渗透网络,保留了电导率,并在C/5循环时100个循环后100个循环后的容量保持在80%,在C/2时500个循环后约60%。当与NMC111阴极整合时,显示了480 WH kg-1的全细胞重量仪密度。
Developing sustainable battery electrode manufacturing methods is particularly pressing for alloying-type active materials, such as silicon, which often require additional energy-intensive and solvent-based processing to reinforce them with a buffer matrix. This work introduces a new method to fabricate Si anodes as continuous, tough fabrics of arbitrary thickness, without processing solvents, polymeric binders, carbon additive, or any reinforcing matrix. The anodes consist of percolated networks of long Si nanowires directly assembled from suspension in the gas phase, where they are grown via floating catalyst chemical vapour deposition. A high Si content above 75 wt.% in a textile-like network structure leads to high-performance electrode properties. Their gravimetric capacity is 2330 mAh g-1 at C/20 for all thicknesses produced, reaching areal capacities above 9.3 mAh cm-2 at C/20 and 3.4 mAh cm-2 at 1C (with 3.4 mg cm-2). Analysis of rating data gives a high transport coefficient (6.6x10-12 m2 s-1) due to a high out-of-plane electrical conductivity (0.6 S m-1) and short solid-state diffusion length. Si remains a percolated network of elongated elements after extended cycling, preserving electrical conductivity and leading to a capacity retention of 80% after 100 cycles at C/5 and ~60% after 500 cycles at C/2. When integrated with NMC111 cathode, a full cell gravimetric energy density of 480 Wh kg-1 is demonstrated.