论文标题
Biometrynet:标准超声平面的基于里程碑的胎儿生物特征估计
BiometryNet: Landmark-based Fetal Biometry Estimation from Standard Ultrasound Planes
论文作者
论文摘要
超声的胎儿生长评估是基于一些生物特征测量,这些测量是手动进行并相对于预期的妊娠年龄进行的。可靠的生物特征估计取决于对标准超声平面中地标的精确检测。手动注释可能是耗时的和操作员的依赖性任务,并且可能导致高测量可变性。现有的自动胎儿生物特征法的方法依赖于初始自动胎儿结构分割,然后是几何标记检测。但是,分割注释是耗时的,可能是不准确的,具有里程碑意义的检测需要开发特定于测量的几何方法。本文介绍了Biometrynet,这是一个克服这些局限性的胎儿生物特征估计的端到端地标回归框架。它包括一种新型的动态定向测定(DOD)方法,用于在网络训练过程中执行测量特定方向的一致性。 DOD降低了网络训练中的变异性,提高了标志性的定位精度,从而产生了准确且健壮的生物特征测量。为了验证我们的方法,我们组装了一个来自1,829名受试者的3,398张超声图像的数据集,这些受试者在三个具有七个不同超声设备的临床部位获得的数据集。在两个独立数据集上的三个不同生物识别测量值的比较和交叉验证表明,生物元网络是稳健的,并且产生了准确的测量,其误差低于临床上允许的误差,胜过其他现有的自动化生物测定估计方法。代码可从https://github.com/netanellavisdris/fetalbiometry获得。
Fetal growth assessment from ultrasound is based on a few biometric measurements that are performed manually and assessed relative to the expected gestational age. Reliable biometry estimation depends on the precise detection of landmarks in standard ultrasound planes. Manual annotation can be time-consuming and operator dependent task, and may results in high measurements variability. Existing methods for automatic fetal biometry rely on initial automatic fetal structure segmentation followed by geometric landmark detection. However, segmentation annotations are time-consuming and may be inaccurate, and landmark detection requires developing measurement-specific geometric methods. This paper describes BiometryNet, an end-to-end landmark regression framework for fetal biometry estimation that overcomes these limitations. It includes a novel Dynamic Orientation Determination (DOD) method for enforcing measurement-specific orientation consistency during network training. DOD reduces variabilities in network training, increases landmark localization accuracy, thus yields accurate and robust biometric measurements. To validate our method, we assembled a dataset of 3,398 ultrasound images from 1,829 subjects acquired in three clinical sites with seven different ultrasound devices. Comparison and cross-validation of three different biometric measurements on two independent datasets shows that BiometryNet is robust and yields accurate measurements whose errors are lower than the clinically permissible errors, outperforming other existing automated biometry estimation methods. Code is available at https://github.com/netanellavisdris/fetalbiometry.