论文标题
分子信息理论满足蛋白质折叠
Molecular information theory meets protein folding
论文作者
论文摘要
我们提出了分子信息理论的应用来分析单域蛋白的折叠。我们分析了蛋白质科学各个领域的结果,例如基于序列的电位,减少氨基酸字母,骨干构型熵,二级结构含量,残留埋葬层以及蛋白质稳定性变化的突变研究。我们发现,进化蛋白的序列中包含的平均信息非常接近指定折叠〜2.2 $ \ pm $ 0.3位/(站点操作)所需的平均信息。进化蛋白中的有效字母大小等于紧凑型状态下残基的有效构象的有效数量约为5。我们计算出折叠约50%约50%时的能量信息转换效率,低于70%的理论极限,但比人类建造的宏观宏观镜头机高得多。我们提出了分子信息理论和能量景观理论之间的简单映射,并探讨了序列进化,构型熵与蛋白质折叠的能量之间的联系。
We propose an application of molecular information theory to analyze the folding of single domain proteins. We analyze results from various areas of protein science, such as sequence-based potentials, reduced amino acid alphabets, backbone configurational entropy, secondary structure content, residue burial layers, and mutational studies of protein stability changes. We found that the average information contained in the sequences of evolved proteins is very close to the average information needed to specify a fold ~2.2 $\pm$ 0.3 bits/(site operation). The effective alphabet size in evolved proteins equals the effective number of conformations of a residue in the compact unfolded state at around 5. We calculated an energy-to-information conversion efficiency upon folding of around 50%, lower than the theoretical limit of 70%, but much higher than human built macroscopic machines. We propose a simple mapping between molecular information theory and energy landscape theory and explore the connections between sequence evolution, configurational entropy and the energetics of protein folding.