论文标题
在特殊图类中查找$ k $ - 社区结构
Finding $k$-community structures in special graph classes
论文作者
论文摘要
对于固定的整数$ k \ ge 2 $,在无向图中的$ k $ - 社区结构是其顶点的分区,将其置于$ k $ sets中,每一个至少两个大小,因此图表的每个顶点至少在其自己社区中与其他任何社区中的邻居一样多。在本文中,我们为$ n $顶点的森林提供了必要和充分的条件,以承认$ k $ - 社区结构。此外,如果存在,我们提供了一个$ O(n^{2})$ - 时间算法,该算法在森林中计算出这样的$ k $ - 社区结构(如果存在)。这些结果扩展了[Bazgan等人,结构和算法性质的结果2 $ 2 $ - 社区结构,算法,80(6):1890-1908,2018]。我们还表明,如果允许社区拥有尺寸的尺寸,那么每个具有$ n \ geq k \ geq 2 $ Vertices的森林承认可以在时间$ o(n^{2})$中找到的$ k $ - 社区结构。然后,我们考虑阈值图,并显示每个连接的阈值图在且仅当它不是恒星同构时都允许$ 2 $ - 社区结构。同样,如果存在这样的$ 2 $ - 社区结构,我们将解释如何在线性时间内获得它。我们进一步描述了两个无限连接阈值图的家族,其中包含一个完全孤立的顶点,它们不承认任何2美元的社区结构。最后,我们提出了一个新的无限连接图的家族,即使允许社区具有码头上的尺寸,也可能包含一个偶数或奇数的顶点,即使社区的结构也有$ 2 $。
For a fixed integer $k\ge 2$, a $k$-community structure in an undirected graph is a partition of its vertex set into $k$ sets called communities, each of size at least two, such that every vertex of the graph has proportionally at least as many neighbours in its own community as in any other community. In this paper, we give a necessary and sufficient condition for a forest on $n$ vertices to admit a $k$-community structure. Furthermore, we provide an $O(n^{2})$-time algorithm that computes such a $k$-community structure in a forest, if it exists. These results extend a result of [Bazgan et al., Structural and algorithmic properties of $2$-community structure, Algorithmica, 80(6):1890-1908, 2018]. We also show that if communities are allowed to have size one, then every forest with $n \geq k\geq 2$ vertices admits a $k$-community structure that can be found in time $O(n^{2})$. We then consider threshold graphs and show that every connected threshold graph admits a $2$-community structure if and only if it is not isomorphic to a star; also if such a $2$-community structure exists, we explain how to obtain it in linear time. We further describe two infinite families of disconnected threshold graphs, containing exactly one isolated vertex, that do not admit any $2$-community structure. Finally, we present a new infinite family of connected graphs that may contain an even or an odd number of vertices without $2$-community structures, even if communities are allowed to have size one.