论文标题

随着时间的推移,用于目标预测任务的元学习

Meta-Learning over Time for Destination Prediction Tasks

论文作者

Tenzer, Mark, Rasheed, Zeeshan, Shafique, Khurram, Vasconcelos, Nuno

论文摘要

需要了解和预测车辆的行为是运输领域中的公共和私人目标的基础,包括城市规划和管理,乘车共享服务以及智能运输系统。个人的喜好和预期目的地在整天,周和一年中各不相同:例如,晚上最受欢迎的酒吧,海滩在夏天最受欢迎。尽管有这一原则,我们注意到葡萄牙波尔图的流行基准数据集的最新研究充其量只能通过纳入时间信息来提高预测性能的边际改善。我们提出了一种基于超网络的方法,这是一种元学习的变体(“学习学习”),其中神经网络学会根据输入来改变自己的权重。在我们的情况下,负责目标预测的权重有所不同,尤其是输入轨迹的时间。时间条件的权重显着改善了模型相对于消融研究和可比较的工作的误差,我们证实了我们的假设,即时间知识应改善对车辆预期目的地的预测。

A need to understand and predict vehicles' behavior underlies both public and private goals in the transportation domain, including urban planning and management, ride-sharing services, and intelligent transportation systems. Individuals' preferences and intended destinations vary throughout the day, week, and year: for example, bars are most popular in the evenings, and beaches are most popular in the summer. Despite this principle, we note that recent studies on a popular benchmark dataset from Porto, Portugal have found, at best, only marginal improvements in predictive performance from incorporating temporal information. We propose an approach based on hypernetworks, a variant of meta-learning ("learning to learn") in which a neural network learns to change its own weights in response to an input. In our case, the weights responsible for destination prediction vary with the metadata, in particular the time, of the input trajectory. The time-conditioned weights notably improve the model's error relative to ablation studies and comparable prior work, and we confirm our hypothesis that knowledge of time should improve prediction of a vehicle's intended destination.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源