论文标题
腔体增强的2D材料量子发射器与氮化硅微孔子确定性整合
Cavity-Enhanced 2D Material Quantum Emitters Deterministically Integrated with Silicon Nitride Microresonators
论文作者
论文摘要
2D材料中的光学活性缺陷,例如六角硼(HBN)和过渡金属二核苷(TMDS),是一种有吸引力的单光子发射剂,具有高亮度,室内温度较高,室内温度操作,Emitter阵列的特定地点工程,以及具有外部应变和电场和电场和电场的调谐功能。在这项工作中,我们演示了一种新颖的方法,可以在无背景的氮化硅微孔谐振器中精确对齐和嵌入HBN和TMD。通过purcell效应,高纯度HBN发射器在室温下表现出高达$ 46 \%$的空腔增强光谱耦合效率,这超过了无腔指导的理论限制,几乎是刻录命令。这些设备由CMOS兼容的过程制造,并且没有表现出2D材料光学特性,对热退火的鲁棒性以及单模型波导中量子发射器的100 nm定位精度,为具有量距的量子光子芯片提供了具有Onemand Single-Photon源的可缩放量子芯片的路径。
Optically active defects in 2D materials, such as hexagonal boron nitride (hBN) and transition metal dichalcogenides (TMDs), are an attractive class of single-photon emitters with high brightness, room-temperature operation, site-specific engineering of emitter arrays, and tunability with external strain and electric fields. In this work, we demonstrate a novel approach to precisely align and embed hBN and TMDs within background-free silicon nitride microring resonators. Through the Purcell effect, high-purity hBN emitters exhibit a cavity-enhanced spectral coupling efficiency up to $46\%$ at room temperature, which exceeds the theoretical limit for cavity-free waveguide-emitter coupling and previous demonstrations by nearly an order-of-magnitude. The devices are fabricated with a CMOS-compatible process and exhibit no degradation of the 2D material optical properties, robustness to thermal annealing, and 100 nm positioning accuracy of quantum emitters within single-mode waveguides, opening a path for scalable quantum photonic chips with on-demand single-photon sources.