论文标题
戈斯和佩勒林$ l $ series的卷积
Convolutions of Goss and Pellarin $L$-series
论文作者
论文摘要
我们建立了与德林菲尔德模块相关的Goss和Pellarin $ L $系列的卷积结果的特殊价值结果,这些模块在Tate代数中采用了值。将Demeslay的类模块公式应用于另一个Drinfeld模块的某些刚性分析曲折,我们将与Carlitz模块和Anderson-Thakur函数相关的Pellarin $ L $ function的特殊值公式和Drinfeld函数相关联到Drinfeld函数的任意级别及其严格的分析琐事。通过Schur多项式理论,这些身份采用了Rankin-Selberg类型卷积的专业形式。这些卷积$ l $ series也被标识为鲜明的单位。
We establish special value results of convolutions of Goss and Pellarin $L$-series attached to Drinfeld modules that take values in Tate algebras. Applying the class module formula of Demeslay to certain rigid analytic twists of one Drinfeld module by another, we extend the special value formula for the Pellarin $L$-function associated to the Carlitz module and the Anderson-Thakur function to Drinfeld modules of arbitrary rank and their rigid analytic trivializations. By way of the theory of Schur polynomials these identities take the form of specializations of convolutions of Rankin-Selberg type. These convolution $L$-series are also identified with covolumes of Stark units.