论文标题
桥接平均场游戏和通过轨迹正则化归一流的流动
Bridging Mean-Field Games and Normalizing Flows with Trajectory Regularization
论文作者
论文摘要
平均场游戏(MFGS)是具有大量相互作用代理的系统的建模框架。他们在经济学,金融和游戏理论中有应用。标准化流(NFS)是一个深层生成模型的家族,通过使用可逆映射来计算数据的可能性,该映射通常通过使用神经网络进行参数化。它们对于密度建模和数据生成很有用。尽管对这两种模型进行了积极的研究,但很少有人注意到两者之间的关系。在这项工作中,我们通过将NF的训练定为解决MFG来揭示MFGS和NF之间的联系。这是通过根据试剂轨迹重新解决MFG问题的实现,并通过流量体系结构对所得MFG的离散化进行参数化。通过这种联系,我们探讨了两个研究方向。首先,我们采用表达的NF体系结构来准确地求解高维MFG,以避开传统数值方法中维度的诅咒。与其他深度学习方法相比,我们的基于轨迹的公式编码神经网络中的连续性方程,从而更好地近似人口动态。其次,我们对NFS进行运输成本的培训正规,并显示了控制模型Lipschitz绑定的有效性,从而提供了更好的概括性能。我们通过对各种合成和现实生活数据集的全面实验来展示数值结果。
Mean-field games (MFGs) are a modeling framework for systems with a large number of interacting agents. They have applications in economics, finance, and game theory. Normalizing flows (NFs) are a family of deep generative models that compute data likelihoods by using an invertible mapping, which is typically parameterized by using neural networks. They are useful for density modeling and data generation. While active research has been conducted on both models, few noted the relationship between the two. In this work, we unravel the connections between MFGs and NFs by contextualizing the training of an NF as solving the MFG. This is achieved by reformulating the MFG problem in terms of agent trajectories and parameterizing a discretization of the resulting MFG with flow architectures. With this connection, we explore two research directions. First, we employ expressive NF architectures to accurately solve high-dimensional MFGs, sidestepping the curse of dimensionality in traditional numerical methods. Compared with other deep learning approaches, our trajectory-based formulation encodes the continuity equation in the neural network, resulting in a better approximation of the population dynamics. Second, we regularize the training of NFs with transport costs and show the effectiveness on controlling the model's Lipschitz bound, resulting in better generalization performance. We demonstrate numerical results through comprehensive experiments on a variety of synthetic and real-life datasets.