论文标题

在1d中的四分之一klein-gordon附近的渐近稳定性

Asymptotic stability near the soliton for quartic Klein-Gordon in 1D

论文作者

Kairzhan, Adilbek, Pusateri, Fabio

论文摘要

我们认为非线性焦点klein-gordon方程在$ 1 + 1 $尺寸和不稳定索利顿附近的解决方案的全球时空动态。我们的主要结果是证明最佳衰变和局部衰减的证明,即使静态孤子的扰动源自构成的稳定歧管的一部分,该数据源自Bates-Jones构建的稳定歧管的子集(Dynamics Reford,1989年)和Kowalczyk-Martel-Muñoz(J.Eur。Math。Soc。2021)。我们的结果补充了Kowalczyk-Martel-Muñoz(J.eur。Math。Soc。,2021),并确认Bizon-Chmaj-Szpak(J.Math。phys。,2011)的数值结果,当时考虑了$ u^p $,$ u^p $带有$ p \ egeq 4 $。特别是,我们在数据的本地化假设下,在空间中提供有关孤子渐近稳定扰动的本地和全球信息。

We consider the nonlinear focusing Klein-Gordon equation in $1 + 1$ dimensions and the global space-time dynamics of solutions near the unstable soliton. Our main result is a proof of optimal decay, and local decay, for even perturbations of the static soliton originating from well-prepared initial data belonging to a subset of the stable manifold constructed in Bates-Jones (Dynamics reported, 1989) and Kowalczyk-Martel-Muñoz (J. Eur. Math. Soc., 2021). Our results complement those of Kowalczyk-Martel-Muñoz (J. Eur. Math. Soc., 2021) and confirm numerical results of Bizon-Chmaj-Szpak (J. Math. Phys., 2011) when considering nonlinearities $u^p$ with $p \geq 4$. In particular, we provide new information both local and global in space about asymptotically stable perturbations of the soliton under localization assumptions on the data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源