论文标题

接近最佳算法,可容忍距离距离甲骨文和单源替换路径问题

Near Optimal Algorithm for Fault Tolerant Distance Oracle and Single Source Replacement Path problem

论文作者

Dey, Dipan, Gupta, Manoj

论文摘要

在带有源$ s $的图形$ g $中,我们设计了一个距离甲骨文,可以回答以下查询:查询$(s,t,e)$ - 找到从固定源$ s $到任何目标顶点$ t $的最短路径的最短路径长度,同时避免任何边缘$ e $。我们设计了一种确定性算法,该算法在$ \ tilde {o}(m \ sqrt n)$ time中构建了这样的甲骨文。我们的Oracle使用$ \ tilde {o}(n \ sqrt n)$ space,可以回答$ \ tilde {o}(1)$ time中的查询。我们的甲骨文是Bilò等人的作品的改进。 (ESA 2021)在预处理时间中,该时间在$ \ tilde {o}(m \ sqrt n+n^2)中构造了此问题的第一个确定性甲骨文。 使用我们的距离Oracle,我们还解决了{\ em单源替换路径问题}(SSR问题)。 Chechik和Cohen(Soda 2019)设计了一种随机组合算法来解决SSR问题。其算法的运行时间为$ \ tilde {o}(m \ sqrt n + n^2)$。在本文中,我们表明可以在$ \ tilde {o}(m \ sqrt n + | \ mathcal {r} |)$ time中解决SSR问题,其中$ \ Mathcal {r} $是$ G $中SSR问题的输出集。我们的SSR算法是最佳的(最高(最多),因为对于解决此问题的任何组合算法,有条件下限$ω(M \ sqrt n)$。

In a graph $G$ with a source $s$, we design a distance oracle that can answer the following query: Query$(s,t,e)$ -- find the length of shortest path from a fixed source $s$ to any destination vertex $t$ while avoiding any edge $e$. We design a deterministic algorithm that builds such an oracle in $\tilde{O}(m\sqrt n)$ time. Our oracle uses $\tilde{O}(n\sqrt n)$ space and can answer queries in $\tilde{O}(1)$ time. Our oracle is an improvement of the work of Bilò et al. (ESA 2021) in the preprocessing time, which constructs the first deterministic oracle for this problem in $\tilde{O}(m\sqrt n+n^2)$ time. Using our distance oracle, we also solve the {\em single source replacement path problem} (SSR problem). Chechik and Cohen (SODA 2019) designed a randomized combinatorial algorithm to solve the SSR problem. The running time of their algorithm is $\tilde{O}(m\sqrt n + n^2)$. In this paper, we show that the SSR problem can be solved in $\tilde{O}(m\sqrt n + |\mathcal{R}|)$ time, where $\mathcal{R}$ is the output set of the SSR problem in $G$. Our SSR algorithm is optimal (upto polylogarithmic factor) as there is a conditional lower bound of $Ω(m\sqrt n)$ for any combinatorial algorithm that solves this problem.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源