论文标题
电子学习中扩张行为的预测:多个机器学习模型的比较
Prediction of Dilatory Behavior in eLearning: A Comparison of Multiple Machine Learning Models
论文作者
论文摘要
拖延是任务的不合理延迟,是在线学习中的普遍情况。潜在的负面后果包括更高的辍学风险,增加压力和情绪减少。由于学习管理系统和学习分析的增加,可以检测到这种行为的指标,从而预测未来的拖延和其他扩张行为。但是,关注此类预测的研究很少。此外,几乎不存在涉及不同类型的预测指标和预测性能之间的比较的研究。在这项研究中,我们旨在通过分析多种机器学习算法的性能来填补这些研究空白,以预测具有两类预测指标的高等教育环境中在线任务的延迟或及时提交:基于主观的,基于问卷调查的变量和基于原始的数据,基于原木数据的指标从学习管理系统中提取。结果表明,具有目标预测变量的模型始终超过具有主观预测指标的模型,并且两种变量类型的组合表现稍好一些。对于这三个选项中的每一个,一种不同的方法盛行(主观,贝叶斯多层次模型的梯度增强机器,共同预测指标的随机森林)。我们得出的结论是,在学习管理系统中实施此类模型之前,应仔细注意预测变量和算法。
Procrastination, the irrational delay of tasks, is a common occurrence in online learning. Potential negative consequences include higher risk of drop-outs, increased stress, and reduced mood. Due to the rise of learning management systems and learning analytics, indicators of such behavior can be detected, enabling predictions of future procrastination and other dilatory behavior. However, research focusing on such predictions is scarce. Moreover, studies involving different types of predictors and comparisons between the predictive performance of various methods are virtually non-existent. In this study, we aim to fill these research gaps by analyzing the performance of multiple machine learning algorithms when predicting the delayed or timely submission of online assignments in a higher education setting with two categories of predictors: subjective, questionnaire-based variables and objective, log-data based indicators extracted from a learning management system. The results show that models with objective predictors consistently outperform models with subjective predictors, and a combination of both variable types perform slightly better. For each of these three options, a different approach prevailed (Gradient Boosting Machines for the subjective, Bayesian multilevel models for the objective, and Random Forest for the combined predictors). We conclude that careful attention should be paid to the selection of predictors and algorithms before implementing such models in learning management systems.