论文标题
通过日志的用户行动中认知偏见的个性化检测:锚定和重新偏见
Personalized Detection of Cognitive Biases in Actions of Users from Their Logs: Anchoring and Recency Biases
论文作者
论文摘要
认知偏见是人类在处理信息和环境时使用的精神捷径,这会导致偏见的行动和行为(或行动),对自己不知所措。偏见采取了多种形式,认知偏见占据了核心作用,该角色会造成公平,问责制,透明,道德,法律,医学和歧视。检测偏见是朝着缓解措施的必要步骤。在此,我们专注于两个认知偏见 - 锚定和新近度。计算机科学中认知偏见的识别在很大程度上是在信息检索的领域中,并且借助带注释的数据在总级别上确定了偏差。提出了不同的偏见检测方向,我们提供了一种原则性的方法,以及机器学习以从用户操作的Web日志中检测这两个认知偏见。我们的个人用户级别检测使其真正个性化,并且不依赖注释的数据。取而代之的是,我们从认知心理学中建立的两个基本原理开始,使用注意力网络的修改培训,并根据这些原则以新颖的方式来解释注意力,以推断和区分这两种偏见。个性化方法允许在执行任务时容易受到这些偏见的特定用户的检测,并可以帮助他们之间的意识提高以进行偏见缓解。
Cognitive biases are mental shortcuts humans use in dealing with information and the environment, and which result in biased actions and behaviors (or, actions), unbeknownst to themselves. Biases take many forms, with cognitive biases occupying a central role that inflicts fairness, accountability, transparency, ethics, law, medicine, and discrimination. Detection of biases is considered a necessary step toward their mitigation. Herein, we focus on two cognitive biases - anchoring and recency. The recognition of cognitive bias in computer science is largely in the domain of information retrieval, and bias is identified at an aggregate level with the help of annotated data. Proposing a different direction for bias detection, we offer a principled approach along with Machine Learning to detect these two cognitive biases from Web logs of users' actions. Our individual user level detection makes it truly personalized, and does not rely on annotated data. Instead, we start with two basic principles established in cognitive psychology, use modified training of an attention network, and interpret attention weights in a novel way according to those principles, to infer and distinguish between these two biases. The personalized approach allows detection for specific users who are susceptible to these biases when performing their tasks, and can help build awareness among them so as to undertake bias mitigation.