论文标题
浮雕的百分化
The Floquet Baxterisation
论文作者
论文摘要
事实证明,量子可集成性是研究量子多体系统的有用工具。在本文中,我们通过Floquet Baxteration的过程构建了一个通用框架,用于可集成的量子电路。通过在Yang-Baxter关系中获得的Floquet Evolution Operators和不均匀的转移矩阵之间建立连接来保证该集成性。这使我们能够构建具有任意深度和各种边界条件的可集成的浮点进化运算符。此外,我们重点关注与交错的6-Vertex模型有关的示例。在缩放限制中,我们与非理性的保形场理论建立了此FLOQUET协议的联系。采用潜在的仿生temperley- lieb代数结构的特性,我们证明了易于平面式的动力学反对称对称性。我们还概述了与集成性相关的量子电路,强调了未来的研究方向。
Quantum integrability has proven to be a useful tool to study quantum many-body systems out of equilibrium. In this paper we construct a generic framework for integrable quantum circuits through the procedure of Floquet Baxterisation. The integrability is guaranteed by establishing a connection between Floquet evolution operators and inhomogeneous transfer matrices obtained from the Yang-Baxter relations. This allows us to construct integrable Floquet evolution operators with arbitrary depths and various boundary conditions. Furthermore, we focus on the example related to the staggered 6-vertex model. In the scaling limit we establish a connection of this Floquet protocol with a non-rational conformal field theory. Employing the properties of the underlying affine Temperley--Lieb algebraic structure, we demonstrate the dynamical anti-unitary symmetry breaking in the easy-plane regime. We also give an overview of integrability-related quantum circuits, highlighting future research directions.